Can. J. Fish. Aquat. Sci. Downloaded from www.nrcresearchpress.com by MIDDLESEX - LONDON HEALTH UNIT on 10/04/15
For personal use only.

Optimal Fisheries Investment under Uncertainty
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A full analysis of optimal fisheries investment strategies must take into account high
levels of uncertainty in future fishery returns, as well as irreversibility of investment in
specialized, nonmalleable fishing fleets. A stochastic optimization model is analyzed using
dynamic programming to determine optimal policy functions for both fleet investment and
fish stock management within an uncertain environment. The resulting policies are qual-
itatively similar to those found in the corresponding deterministic case, but quantitative
differences can be substantial. Simulation results show that optimal fieet capacity should be
expected to fluctuate over a fairly wide range, induced by stochastic variations in the biomass.
However, the performance of a linear-cost risk-neutral fishery is fairly insensitive to vari-
ations in investment and escapement policies around their optimum levels, so that economic
optimization is “forgiving” within this context. A framework of balancing upside and down-
side investment risks is used here to explain the roles of several fishery parameters in relation
to optimal investment under uncertainty. In particular, the intrinsic growth rate of the resource
and the ratio of unit capital costs to unit operating costs are found to be key parameters in
determining whether investment should be higher or lower under uncertainty.
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Une analyse compléte des stratégies d'investissement optimales dans les péches doit tenir
compte de la grande incertitude qui caractérise les revenus, de méme que ’irréversibilité de
I'investissement dans des flottilles de péche spécialisées, non malléables. Nous analysons
dans P’article qui suit un modele d’optimisation stochastique & 1’aide d’une programmation
dynamique, afin de déterminer des fonctions de politiques optimales, tant pour l’inves-
tissement dans les flottilles que pour la gestion des stocks de poissons dans un climat
d’incertitude. Les politiques qui en résultent sont qualitativement identiques a celles qui
avaient été trouvées dans le cas déterministe correspondant, mais il peut exister d’importantes
différences quantitatives. D’apres les résultats de la simulation, on devrait s’attendre que la
capacité optimale de la flottille varie dans une gamme assez étendue, par suite de variations
stochastiques de la biomasse. Cependant, le rendement d’une péche de coilt linéaire et de
risque neutre est assez insensible aux variations de Pinvestissement et aux politiques
d’échappement autour de leurs niveaux optima, de sorte que I’optimisation économique est
«indulgente » dans ce contexte. Afin d’expliquer les réles de plusieurs paramétres de péche
par rapport 2 un investissement optimal dans des conditions d’incertitude, nous équilibrons
les risques d’investissement en hausse et en baisse. Nous constatons, en particulier, que le
taux de croissance intrins¢que de la ressource et le rapport entre cofit en capital unitaire et colit
d’opération unitaire sont les parametres-clés quand il s’agit de déterminer si, dans des
conditions d’incertitude, 'investissement devrait étre plus élevé ou plus faible.
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THIS paper expands upon the fisheries investment model
presented in Charies (1983a). That paper studied the compara-
tive dynamics of optimal fisheries development in a deter-
ministic world, where capital investment in the fishing fleet
and harvest management (“investment in the resource”) must
be considered simultaneously. As in the related work of Clark
et al. (1979), nonmalleable capital and the resulting irreversi-
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bility of investment played a key role.

In this paper, the irreversible investment problem is made
even more realistic by recognizing that fisheries investment
decisions must typically be made within an uncertain environ-
ment (c.f. Arrow and Lind 1970; Brock and Mirman 1978).
In particular, uncertainty is incorporated here in the form of
year-to-year stochastic resource fluctuations, so that future
fish stock levels cannot be predicted in advance (although
average values are known) — this is certainly a common
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feature of most fisheries. Primary emphasis is placed on

examining (i) the appearance of an optimally managed sto-
0 chastic fishery, (ii} the role of economic and ecological
J parameters in determining how uncertainty affects optimal
S investment, and (iii) the relative performance of deterministic
— and stochastic investment policies.
S Questions of optimal fisheries investment under uncertainty
— have also been considered by Dudley and Waugh (1980) and
= McKelvey (1983). These interesting papers examine, respec-
D tively, the effects of several stochastic components in the
T optimal capacity problem and the optimal mix of “specialist”
_y and “generalist” and “generalist” vessels in a fishing fleet.

However, both studies make the simplifying assumption that
T the fish population in any year is independent of past harvests;
= this avoids the complexities involved in the joint investment
O problem but limits the number of fisheries to which their
= results can be applied. For recent reviews of other literature
O on fisheries management under uncertainty, see Andersen and
—! Sutinen (1983) and Spulber (1983).

The Model

The stochastic model utilized here is a direct analog of the
deterministic case discussed in Charles (1983a), to which the
ggadcr is referred for details. To summarize, the dynamics of

e fish stock (R) and the fishing fleet (K) are given by

()
Ruvi = F(8p) Z,
Kn+1 = (1 - 'Y)Kn + In+l

here in any year, the decision variables, escapement (S) and
gavestment (/}, are constrained by the current fish stock and
Qapital stock, according to

—

o e

LC Re 7 <§, <R,
Iy = G,

The former reflects a constraint on intraseasonal harvesting
effort, 0 < E(r) = K, while the second constraint represents
the irreversibility of investment. The lognormal random vari-
ables {Z,} are assumed to be independent and identically dis-
tributed, with mean value 1 (E(Z,) = 1) and with log (Z,.)
having variance o°. Hence, recruitment R follows a lognormal
probability distribution with mean F(S), where S is the pre-
vious year’s escapement and F(-) is the corresponding deter-
ministic stock-recruitment function.

Use of the lognormal distribution is motivated by two fac-
. tors: (1) it is the natural distribution to reflect the large number
@ of independent multiplicative effects facing the growth of fish
w8 from the egg to the adult stage and (2) it reproduces qualitative
2 features of fisheries data, where one often sees a large number
< of low to medium recruitments and occasional very large
_5' recruitments.
iT As in most other fisheries management models, it is
~ assumed that yearly recruitment and escapement are observ-
% able, although in practice, errors in measuring the biomass
(O certainly add to the overall level of uncertainty and complicate
the optimization analysis.

The resource management problem can be summarized as
follows.

1) Given initial biomass R and capacity K, an optimal
end-of-season escapement S* must be determined.
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2) The desired capacity for the following year is deter-
mined, and payment is made for the corresponding investment
I*. (A I-yr delay in bringing new investment online is
assumed, contributing to the resource manager’s uncertainty
in a stochastic environment.)

3) Harvesting and stochastic population dynamics occur, so
that by the start of the next season, the biomass is R’ =
F(§*)-Z for some value of the random variable Z.

4) Depreciation and investment take place, producing a
capacity K’ = (1 — y)}K + I* next scason.

It is assumed throughout this paper that the social resource
manager is risk neutral, that the fishery faces perfectly elastic
demand (with given constant selling price p), and that costs
are linear, with unit cost of harvesting effort ¢ and unit cost
of capital 3. (These assumptions will be relaxed in future
work. Andersen (1982) and Pindyck (1982) considered ques-
tions of optimal harvesting under price variability but did not
address the capital investment problem.)

The yearly rents accruing to the fleet, as a function of
recruitment, capacity, escapement, and investment, are as in
Charles 1983a:

w(R,K,5.) = p(R — §) — (¢/q) log (R/S) — Bl.
The fishery optimization problem is as before, with the excep-
tion that now, future fish stock sizes are averaged over a

probability distribution. Specifically, next scason’s recruit-
ment follows the lognormal density R,+1 ~ dres) o) with

br.0 R) = [V(Q2moR]™
X exp {—(log R — log R + ¢*/2)*/20%}

where R is the mean, given by R = F(S), and the variance is
R¥e™ - 1).
The dynamic programming equation corresponding to this
problem is then given by
() VRK) = Max Max {n(R,K,S,I)
R-exp (—qTK)=S=R =0

+ aE[VR', (1 — K + DI}

where (R,K) is the “state” this year, (§,]) are the controls
(decision variables), R’ is next year’s recruitment (lognor-
mally distributed as above), and & is the discount factor.

Heuristic Analysis and Numerical Method
HEURISTIC ANALYSIS

Equation 1 is identical to the corresponding equation in
Charles 1983a, except that the future value of the fishery is
now averaged over possible future recruitments. The heuristic
analysis proceeds in a similar manner, producing the fol-
lowing optimality results for the target investment curve K =
h(S), the target escapement curve § = s(K), and the actual
(feasible) investment and escapement, /*(S,K) and S*(R,K),
respectively:

(2) E{ViR, (1 — 9K + 1]} = 8/«
or I = 0if E{V(R, (1 — VK] < 8/a
() I%S,K) = max [A(S) — (I — )K,0]
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@) oF'(S)/FO] - ER VAR’ (1 — yK + IS}

-3

R-exp (—q7K); R > s(K) exp (gTK)
5) S*R,K) = s(K); R intermediate
R; R < s(K)

where the expectation over R is with respect to the lognormal
density $r@.0(*), Xo = ¢/pq represents bionomic equilib-
rium, K = h(S) solves E{Vx(F(§)*Z,K)} = 8/a, and § = s(K)
solves equation 4.

In Charles (1982) it is shown that the resulting optimal
policy curves are qualitatively similar to their deterministic
analogues. The important questions, then, concern the behav-
ior of optimally managed stochastic fisheries and the extent to
which randomness affects the quantitative aspects of the opti-
mal policies.

NUMERICAL METHOD

Based on the above heuristic results, numerical methods
have been developed to solve equation 1, using policy iter-
ation to determine the optimal S = s(K) and K = A(S) curves.
The approach used here extends methods of Ludwig (1979)
and Ludwig and Walters (1982); it is more refined than that
used in Charles (1983a), involving the evaluation of integrals
over an infinite interval to determine the expected value func-
tion E[V(+,-}].

The policy iteration algorithm proceeds as follows. First,
an initial guess is made for the policy functions s(K) and h(S).
For these functions, the value function V(R,K) and its first
partial derivatives Vz and Vx are determined simultaneously
over all points on a discrete grid in the biomass/capacity
plane. (An 8 by 8 grid was used in all cases, except for those
involving the whale fishery (see Numerical Resuits bclow)
where a 12 by 12 mesh was necessary to provide suitable
accuracy.) The values of V, Ve, and Vi implicitly define a
differentiable surface in R—K space. It is necessary to extrap-
olate this surface beyond the limits of the discrete grid, so as
to include the entire range of possible biomass values, (3,%);
the extrapolation procedures are described in Charles (1982).
(In fact, for reasons of numerical accuracy and convenience,
the method uses x = log (R) in place of R as a state variable.
Naturally, this change of variables does not affect the final
results.)

The next step is to improve upon the initial policy functions
by inserting the newly found values of V, Vg, and Vi into the
optimality equations 2 and 4. Solving these equations numes-
ically produces new policies s(K) and h(S), which can be
expected to outperform the policies used at the previous step.
Repeating the process using these new policies results in an
iterative approach to the overall optimum. This scheme
performed well for all cases discussed below, although
convergence was rather slow in the absence of depreciation

y=0.
NUMERICAL RESULTS

The numerical methods described above permit a full solu-
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tion to the management problem of determining optimal
investment and escapement policies within an uncertain
environment, As in Charles (1983a), the Australian Gulf of
Carpenteria banana prawn fishery (Clark and Kirkwood 1979)
and the aggregated pelagic whaling fishery (Clark and
Lamberson 1982) are examined. In most cases, the general
form of the prawn fishery has been used as the primary source
of data, but the parameters have been varied to study com-
parative dynamics. The base parameters for both fisheries are
as in Charles (1983a). (Although the model used here is
simple in comparison with most real-world fisheries, there is
nothing specific in its structure to detract from fairly wide
applicability. Hence, with suitable caveats, the general results
should hold also in other fisheries and indeed other renewable
resource industries. )

The underlying stock-recruitment function F(S), repre-
senting the average recruitment for a given escapement S, is
taken to be either F(S) = aS/(1 + aS/b) or F(S) = aS+e */
for the Beverton—Holt and Ricker cases, respectively. The
parameters a and b then represent the maximum productivity
and the maximum possible mean recruitment. For the prawn
fishery, the fairly high, but realistic, value of ¢ = 0.58 was
used in most cases for the uncertainty parameter (representing
the standard deviation of the logarithm of recruitment). This
value of ¢ is the maximum likelihood estimate obtained by
fitting a lognormal distribution to prawn recruitment data
from G. P. Kirkwood (C.S.I.R.O. Division of Fisheries,
Cronulla, Australia, personal communication), with the mean
value of the distribution simply equated to the sample mean
of the data.

In general, the approach used here is to compare optimal
policy functions for a fishery subject to a fairly high degree of
uncertainty (o = 0.58) with the corresponding optimal poli-
cies in the absence of uncertainty (o = 0). The latter deter-
ministic results correspond to those of Charles (1983a) but are
obtained using the more accurate numerical method described
above.

The first subsection below describes the appearance and
behavior of an optimally managed stochastic fishery. The
following subsections examine the effect of several key
fishery parameters in determining the role of uncertainty in
optimal fisheries management. In particular, it is of inter-
est to study whether investment increases or decreases with
increasing uncertainty, and how the outcome is affected
by (i) the intrinsic biomass growth rate, (ii) the capital cost
(relative to variable costs), (iii) the discount rate, and
(iv) the depreciation rate.

APPEARANCE AND BEHAVIOR OF A STOCHASTIC FISHERY

Figure 1a depicts the optimal investment and escapement
policy functions /(S) and s(K) for the base case prawn fishery
with o = 0.58. As discussed in the previous section, the curve
h(S) represents the target fleet capacity for next season, given
escapement S this year. In other words, it is desirable to
purchase I*(S,K) = Max [A(S) — (I — ¥)K,0] in new fleet
capacity, even though stochastic recruitment next season can
only be predicted roughly (i.e. in the mean) at the time of
ordering the investment. The s(K) optimal escapement curve
is entirely analogous to its deterministic counterpart.
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Fig. 1. Optimal policy functions, #(S) and s(X), for the stochastic

base case prawn fishery, with uncertainty parameter (a) o = 0.58 and
(b) o = 0.2. In addition, the steady-state distribution for this opti-
mally managed fishery is approximated by the endpoints of 160 40-yr
simulations, beginning each time at the quasi-equilibrium point
(4.3 x 10°%, 7.75) (see text for details).

The point P(4.3 X 10°, 7.75) marked in Fig. 1a would be
the long-run equilibrium point for the fishery if there were no
random fluctuations. It is referred to here as a “quasi-
equilibrium point”; deterministic fish and fleet dynamics tend
to push the fishery towards this point, but stochastic per-
turbations prevent actual convergence. In fact, as pointed out
by May et al. (1978) and Spuiber (1983), deterministic equi-
librium points translate into steady-state probability distribu-
tions in the stochastic case. In the present two-dimensional
model, any steady state would also be two-dimensional,
although the existence of such an equilibrium distribution has
not been explicitly examined here. Instead, a steady-state
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Fig. 2. Optimal policy functions for the base case stochastic prawn
fishery, together with sample paths showing the effect of stochastic
fluctuations on optimal management of the fishery. (a) Eight 20-yr
sample paths, each beginning from the quasi-equilibrium point. (b) A
single 15-yr outcome. The arrows join (§,K) points; the processes of
depreciation, investment, recruitment, and harvesting occur succes-
sively between each pair of points.

distribution has been approximated by plotting the end points
of a large number (160) of 40-yr fishery simulations, each
emanating from the quasi-equilibrium point P; these end
points are depicted in the figure.

The cloud of points shown in Fig. 1a can be interpreted as
follows: the denser the points in a given region of the S—K
plane, the more likely is the fishery to lie in that region
(i.e. to have that escapement and that capacity) over the long
term. One can observe a considerable spread both in biomass
and fleet capacity values about the quasi-equilibrium point.
The spread in biomass values is due simply to the stochastic
nature of the resource. Variation in the capital stock, on the
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other hand, is an induced phenomenon; fluctuations in recruit-
ment lead directly to variations in escapement, which in turn
cause dispersion in fleet capacity, through the investment
function K* = h(S). This effect will be even more pronocunced
with slower growing stocks, where particularly good or bad
escapement levels will tend to influence the fishery for longer
periods of time and will therefore have a greater effect on
desired fleet capacity.

Since the resource is fairly fast-growing (a = 42), few
points are found at low (S < s(K)) escapement levels. In fact,
the distribution of points resembles a lognormal distribution in
the § direction, truncated below at § = s(K). This is unlikely
to be the case precisely, however, since (S,K) rather than
(R,K) points have been plotted, resulting in a tighter distribu-
tion. (Relatively high (lognormally distributed) R values are
reduced by fishing pressure to comparatively low § values.)
In addition, the spread of points in the S direction can be seen
to be smaller at high capacities, since in this case fishing effort
is sufficient to reduce even high recruitments down to escape-
ments fairly near the s(K) curve.

Figure b shows the effect of reducing the noise level from
o = 0.58 to o = 0.2 in the prawn fishery. As expected, the
steady-state distribution collapses to within a much smaller
neighborhood of the quasi-equilibrium point. One would
expect stochastic effects to be relatively unimportant at such
= < low o values; however, as shall be seen, the values of o that
5\% can be considered “low” depend on the other fishery parame-
£9 ters. In the whale fishery, ¢ = 0.2 can be a substantial level
85 of noise.

g@ To illustrate more vividly the actual process of managing a
5_8 fishery in a stochastic environment, Fig. 2a depicts a set of

£ @ eight 20-yr sample paths for the optimally managed base case

% 8 prawn fishery, with the recruitment chosen each year from a
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© lognormal (¢ = 0.58) density centred on F(S), where S is the
previous year’s escapement. Lines are drawn joining succes-
sive (§,K) points, beginning at the quasi-equilibrium point.
As above, it can be seen that optimal risk-neutral management
results in considerable variation in the fleet capacity, as well
as the biomass, over time.

Figure 2b shows this effect in more detail for a single 15-yr
realization of the fishery’s development. The four processes
of (stochastic) recruitment, harvesting, investment, and de-
preciation combine to determine the movement from one
(5.K) point to the next, governed by the policy curves. Since
the resource is fast-growing and highly variable in this exam-
ple, there is no apparent trend to return to the quasi-
equilibrium point.

Cost OF CAPITAL

Consider Fig. 3 in which the optimal capacity curves a(S)
are shown for fisheries with @ = 14 throughout, but with
varying levels of uncertainty and unit capital cost.

To concentrate on the investment problem, the optimal
escapement curves s(X) have been omitted from Fig. 3. Typ-
ically, the optimal escapement level was found to be fairly
insensitive to the degree of uncertainty for most of the param-
eter combinations considered, a result in accordance with
those of other researchers. There are, however, cases where
uncertainty does affect the s(X) curves; these are discussed
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Fi6. 3. Deterministic (¢ = 0) and stochastic (¢ = 0.58) optimal
fleet capacity functions, h(S), for an ¢ = 14 prawn fishery with three
values of the unit capital cost: & = 0.0832, 0.235, and 0.470
(Australian dollars X 10%).

below. For the remainder of this paper, s(K) curves are shown
only in such cases.

It was seen in the deterministic analysis of Charles (1983a)
that the important cost parameter in the investment problem is
neither capital cost nor operating cost alone, but rather the
ratio of the two. Specifically, a useful quantity to study
appears to be 8/¢7, the ratio of unit capital cost to maximum
yearly operating cost (per unit of capital). In a sense, this
measures the capital intensity of the fleet, since the present
value of maximum total costs per unit of capacity is

& + BT = cT[(d/cT) + B

where

n [33

B=allal - VI'= ;g

allows for discounting and depreciation. The important aspect
of Fig. 3 is the relative position of the 4(S) curve between the
deterministic and stochastic cases, as this ratio of costs, 8/c7,
varies. However, since ¢7 is fixed here, it suffices to speak in
terms of changes in the capital cost. It can be seen that at low
capital costs, the optimal capacity is substantially higher in a
fluctuating environment, while at high unit capital costs the
reverse is true. At the intermediate level 8 = $0.235 million,
the optimal h(S) curves in the deterministic and stochastic
cases exhibit a crossover, so that the introduction of random-
ness increases optimal investment at low biomass levels while
decreasing investment at higher stock sizes.

With regard to the s(K) policy functions, the slower
growing a = 14 fishery shows a slightly greater effect of
randomness on the optimal escapement levels than in the
a = 42 base case: this is indicated for the a = 14, 8§ =
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; uncertainty. (a) Optimal capacity functions for the base case prawn
3 fishery with growth rates @ = 14, 42, 140, and 560. (b) A lower level
S of unit capital cost is assumed (3 = A$0.0832 million rather than
<_ 8 = A$0.47 million), and the valuesa = 3.82 and @ = 14 have been
-& used as possible fish productivity levels. In each case, deterministic
iT (o = 0) and stochastic (¢ = 0.58) cases are considered.

-

& $0.0832 X 10° fishery in Fig. 4b and is discussed further
O below.

The optimal capacity resuits described here can be ex-
plained by considering two opposing effects: the “downside”
risk of suffering idle excess capacity in bad years and the
“upside” risk of lacking sufficient capacity to take full advan-
tage of good years. Ceteris paribus, the optimal fleet capacity
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increases with uncertainty given a relatively low ratio of cap-
ital to operating costs, since the balance of these risks is tilted
towards the upside benefits of investing in extra capacity (at
relatively low cost) to take advantage of exceptionally high
recruitments. However, if unit capital costs are sufficiently
high relative to operating costs, investment will decrease with
the level of uncertainty. In this case the downside risk of more
frequent bad years (when there is little or no return on the
expensive investment) outweighs the advantages of having
extra capital available to profit from good years. In the inter-
mediate case, it appears that the role of uncertainty depends
on the escapement level; at high biomass levels, the variance
in recruitment is also high, so that the downside problem
predominates. Hence, investment is lower under uncertainty;
the balancing act tilts towards caution in investment. On the
other hand, if escapement is already relatively low, and the
stock tends (in the mean) to grow reasonably rapidly, then the
potential benefits to extra (upside) investment outweigh the
downside risk. Increased investment under uncertainty be-
comes optimal. Where the crossover will occur, if it does at
all, seems rather difficult to predict. Indeed in most cases
where a crossover appears, the difference between the i(S)
curves in the deterministic and stochastic cases tends to be
small.

PRODUCTIVITY OF THE RESOURCE STOCK

Figure 4a shows deterministic and stochastic optimal
capacity functions for each of four possible values of the
growth rate parameter, with other parameters as in the base
case fishery. (The value @ = 560, corresponding to very high
fish stock productivity, was chosen to approximate a situation
of independence between recruitment and escapement.)

Examining Fig. 4a, one can observe a uniform progression
from high to low growth rates. When a = <, it is shown in
Charles (1982) that the optimal capacity must increase with
the level of uncertainty. The case a = 560 follows this result,
at least for reasonably high stock levels. However, with
a = 140, the optimal capacity is lower under uncertainty, and
this effect increases as the growth rate is decreased to a = 42
and then to @ = 14. (As before, in each case, there is little
difference between the stochastic and deterministic optimal
escapements. )

If the unit capital cost is reduced, in this case to $0.0832
million, results remain qualitatively unchanged. Figure 4b
shows the deterministic (¢ = 0) and stochastic (¢ = 0.58)
optimal policy functions for the two cases a = 14 and
a = 3.82, with the lower capital cost. When natural mortality
is taken into account the latter ¢ value corresponds to a max-
imum net growth rate of 4% annually. This value was chosen
to equal that of the whale fishery for comparative purposes
discussed below. In this case, even at such low productivity,
the unit capital cost is sufficiently low that the optimal capac-
ity remains positive for both the deterministic and stochastic
cases. The target capacity is generally higher under uncer-
tainty, although there is a very slight crossover in the h(S)
curves, a result that is returned to in discussion of the whale
fishery. As the biomass growth rate is increased to a = 14,
the optimal capacity under uncertainty rises even further
above its deterministic counterpart.

While optimal policies can be determined for the ¢ = 3.82
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FiG. 5. Depreciation rate and uncertainty: the optimal deterministic
and stochastic capacity functions are shown for each of y = 0, 0.15,
and 0.20 for the base case prawn fishery.

fishery, in fact this fishery would not be economically sustain-
able in a deterministic environment; the equilibrium occurs
at R = § = 0.28 x 10°, which is well below the rent-
dissipating bionomic equilibrium. Hence, no fishery will exist
unless the resource is artificially enhanced or economic condi-
tions improve significantly. In the stochastic case, however,
there is always a possibility of the biomass reaching a suf-
ficiently high level to warrant investment in the fishery. In the
example shown here, such an occurrence will be rare, but
amongst the world’s fisheries, there will likely be many that
should follow such a pattern of periodic development, re-
sponding to occasional exceptionally high recruitments.

With regard to optimal escapement levels, whena = 3.82,
s(K) = xo (for all K) in the deterministic case, while
s(K) > xo for o = 0.58. Hence, the fishery should be driven
towards its zero-profit level in the deterministic case but
should be somewhat more conservationist under uncertainty.
The a = 14 optimal escapement curves exhibit rather compli-
cated behavior, with the stochastic s(K) curve lying above the
o = 0 curve, except in an intermediate range of fleet sizes
(between K = 10 and K = 24). This intermediate phase ap-
pears to be caused by the considerable variation in the ficet
investment policies with uncertainty, since /*(§,K) enters into
the optimality equation determining s(K). However, in any
case, the maximum difference between the s(K) curves with
a = 14 is only As = 0.15 x 10°%

The interplay between the degree of randomness and the
intrinsic growth rate can be explained by appealing to
the downside versus upside argument discussed above. The
slower growing the resource stock, the greater the connection
between recruitment and the previous season’s escapement.
In effect, the memory of the system is longer, so that both
particularly low and particularly high recruitments will tend to
be more persistent in the fishery (although, of course, sto-
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FiG. 6. Discount rate and uncertainty: the optimal deterministic and
stochastic capacity functions are shown for each of « = 0.80, 0.90,
and .99 (with respective discount rates r = 25, 11, and 1%} in the
case of the prawn fishery.

chastic fluctuations will cause deviations from this trend).
This has implications for both the downside and upside as-
pects of the investment question. On the one hand, the down-
side risk for new investment will be greater, since the proba-
bility of suffering a series of bad years is increased. On the
other hand, the upside benefits of extra fleet capacity are
reduced because a high recruitment will tend to persist over
several seasons and can therefore be harvested at a more
leisurely pace, using less capital. The situation is reversed
with fast-growing stocks, where the high recruitments pro-
duced in good years must be utilized immediately or forever
lost, and hence, there is a strong incentive to invest in addi-
tional capital. On balance, therefore, the stochastic optimal
capacity will always exceed its deterministic counterpart if
recruitment is independent of past escapements (¢ = ), but
this effect will decrease and likely reverse itself as the intrinsic
growth rate decreases and downside risks begin to outweigh
upside benefits. In fact, the effect of uncertainty on optimal
investment depends jointly on the biomass growth rate and the
capital cost to operating cost ratio (see Discussion for a con-
sideration of this rather complex interaction).

DEPRECIATION RATE

Figure 5 shows that in the @ = 42 case, the depreciation
rate plays a role similar to that of the unit capital cost de-
scribed above. In the absence of depreciation (y = 0), the
optimal capacity under uncertainty exceeds that of the deter-
ministic case. Since capital is infinitely long-lived in such a
case, the effective yearly rental cost of capital is relatively
low. Hence, the downside risk of an increased capital stock
(above that of the deterministic case) is relatively small. As
the rate of depreciation increases, the effective time horizon
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O'Bicker parameters a = 3.172 and b = 7.0 X 10° and uncertainty

£ @ = 0and 0.58.

Q5

For a given unmit capacity is shortened, so that the upside
= Benefits of an extra unit of capacity are reduced, since there
< dire likely to be fewer years in which the fishery could take
advantage of a higher level of capacity. Thus, it is not sur-
Lprising to see that the optimal capacity decreases with uncer-
tainty when y = 0.15 or vy = 0.20. In each of the three
cases, the optimal escapement was insensitive to the level of
uncertainty.

The effect of depreciation on this base case fishery can be
summarized as follows: the lower the depreciation rate, the
more likely is investment to be higher under uncertainty. In
other words, the difference: “(stochastic optimal capacity) —
(deterministic optimal capacity)” increases as the depreciation
rate decreases.

With a slower growing (a = 14), lower capital cost
(& = $0.0832 million, 8/cT = 2.0) fishery, Charles (1983a)
found that for the deterministic case, optimal investment
-~ levels can actually increase with the depreciation rate, if
) escapement is sufficiently high. It was argued that this result
+ was due to an incentive to harvest the resource quickly, before
3 the fleet depreciates. If capital is relatively cheap, this incen-
< tive outweighs the effective increase in unit capital cost due
-5' to depreciation. However, the same behavior does not carry
iL over to the corresponding stochastic fishery; results obtained
~; for this fishery indicate that although investment levels are

> uniformly higher with ¢ = 0.58 than in the deterministic
() case, optimal capacity decreases as the depreciation rate is
increased, for all escapement values. This may be due to one
of two reasons: either (i) the stochastic investment levels are
already sufficiently high that the resource can be harvested as
rapidly as necessary or (ii) stochastic fluctuations add suf-
ficient unpredictability to the fishery that extra investment, to
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allow more rapid harvesting in the face of depreciation, is not
warranted.

DIiSCOUNT RATE

Figure 6 depicts the optimal policy curves with and without
randomness for three values of the discount factor (a) and
corresponding discount rate (r = {(1 — a)/a] X 100%).

It can be noted that as the rate of discounting is increased
(i) the relative difference between optimal deterministic and
stochastic fleet capacities increases and (ii) the region of
escapements for which optimal investment is greater under
uncertainty diminishes. Hence, an increase in the discount
rate is similar in effect to an increase in umit capital cost,
increasing the downside risk of investment under uncertainty.
However, it appears that at least for these parameter combina-
tions, there is relatively little interplay between the discount
rate and the level of uncertainty over a broad range of discount
rates. Of course, the role of the discount rate in resource
management is a complicated one, and these limited results
should not be extrapolated too far.

RICKER STOCK-RECRUITMENT

If Beverton—Holt population dynamics are replaced by a
Ricker reproduction function, the heuristic analysis and the
results of Charles (1983a) suggest that the optimal investment
curve i(S) should mimic the Ricker form, rising to a peak and
then declining to zero. Figure 7 confirms this qualitative
behavior. In terms of the future of the fish stock, very large
escapements are as bad as very small ones; if X = 0 but
escapement § > 14.0 x 10°, the expected value of a unit of
investment is less than its cost and, hence, I* = 0.

Comparing the deterministic and stochastic optimal capac-
ity functions, one can see that if the future of the fish stock
is relatively bright (3.25 X 10° < § < 9.75 x 10%, then
investment is lower under uncertainty, while the reverse is
true if expected future stock sizes are relatively small. This is
equivalent to a single crossover in the A(S) curves for the
Beverton—Holt case (e.g. compare the a = 14, § =
$0.235 x 10° results shown in Fig. 3) and can be explained
by examining the interaction of upside and downside invest-
ment risks, as above.

WHALE FISHERY

To this point, various modifications of the prawn fishery
data have been considered. To check the robustness of the
above results, this subsection examines the effect of uncer-
tainty on the base case whaling fishery. Figure 8 shows the
optimal capacity and escapement curves for the cases of
o=0, o =0.1, and o = 0.2, which cover a reasonable
range of uncertainty for the aggregated Antarctic whale
stocks.

It can be seen thaf increasing the level of uncertainty
decreases the optimal capacity for relatively low stock sizes
(S < 360 x 10%) but increases optimal capacity for high bio-
mass levels. In other words, investment under uncertainty
should respond to the state of the fishery; if the whale stock
is particularly abundant, it is worthwhile taking advantage of
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Fic. 8. Whale fishery under uncertainty: the optimal policy func-
tions A(S) and s(K) are shown for each of the uncertainty levels
g =0,0.1, and 0.2 (the s(K} curves for ¢ = 0 and ¢ = 0.1 differ
negligibly).

good years by investing in capacity above the deterministic
level, while for lower stock sizes a more conservative in-
vestment policy is to be preterred. However, the deterministic
equilibrium point for the whale fishery lies at a low biomass
level (S = 114 X 10°, K = 2250), so that even with
o = 0.2 one will rarely see escapements § > 360 X 107 in
the long term. On the other hand, the unexploited deter-
ministic equilibrium lies at § = 462 x 10°. Hence, for this
example the optimal stochastic policy faced with a virgin
stock calls for an initial investment above the deterministic
optimum but an investment level that is generally lower under
uncertainty in the long term.

Note that both the maximum biomass growth rate and the
ratio of unit capital cost to maximum yearly variable cost
(3/¢T = 2.0) for the base case whale fishery are the same as
for a “prawn fishery” witha = 3.82and § = $0.0832 million
(by design). Comparing Fig. & with results for that particular
prawn fishery case, shown in Fig. 4b, one can see that the
optimal policy curves are similarly behaved in most respects.
In both cases, there is a crossover between the deterministic
and stochastic &(S) curves. However, the location and extent
of the crossover is quite different in the two fisheries, possibly
due either to the difference in noise levels being considered or
to the difference in carrying capacity between the two fish-
eries. The latter, represented by the solution of F{S5) = §, is
relatively large for the whale fishery (462 X 10" >> x, =
55 X 10% but small for the prawn fishery described above

CAN. I. FISH. AQUAT. SCL., VOL. 40, 1983

TaBLE 1. Expected value function V(R,K) evaluated ina o = 0.58
stochastic environment, using the appropriate optimal stochastic pol-
icies. Recruitment is given in millions of kilograms, capacity K in
standardized vessels, and value in millions of Australian dollars.

Recruitment

Capacity 0.20 0.50 [.00 2.00 3.00 450 7.00 200
0.0 461 504 539 591 626 660 692 743
30 475 521 560 6.12 658 7.10 7.74 9.8}
6.0 489 538 58I 633 685 7.53 844 119
9.0 502 554 601 654 7.08 790 9.04 137
12.0 515 569 6.19 676 7.29 821 955 153
15,06 527 584 636 697 750 848 999 16.6
18.0 539 598 653 7.17 7.70 8.69 104 178

21.0 550 6.12 6.68 735 7.88 8.87 107 18.8

(0.28 X 10° < xo = 1.0 X 10%. In any case, the general
result appears to be that investment is either zero or decreases
with uncertainty for most reasonable escapement values in
these fisheries; only in the case of exceptionally high escape-
ments is it optimal for society to invest in fleet capacity above
the deterministic optimum (assuming a low unit capital cost).

The primary difference between these results and others
presented above is the fact that the crossover in A(S) curves
has been reversed, so that investment is now higher under
uncertainty at high resource stock levels. The opposite effect
was explained above by noting that biomass fluctuations, and
the resulting downside risk, are relatively more important
with large fish stocks. However, these results indicate that the
explanation depends on resource productivity; when the fish
population is very slow-growing, with a long inherent
“memory,” the downside risk diminishes as the stock grows,
so that for an abundant stock, the optimal fleet capacity may
actually increase with the level of fluctuations.

The optimal escapement for the whale fishery rises
with increasing uncertainty, as in the a = 3.82, & =
$0.0832 X 10° prawn fishery discussed above. It appears that
management of a very slowly growing fishery should be more
conservationist the higher the level of uncertainty; this is in
accordance with previous research results. However, the
difference between the ¢ = 0 and o = 0.2 s(K) curves is
never very great, particularly for K values near the quasi-
equilibrium point.

A particularly interesting result in comparing the deter-
ministic and stochastic whale fisheries is the location of these
quasi-equilibrium points: when o = 0.2, the whale stock
steady state is centered on § = 148 X 10°, 30% higher than
the deterministic equilibrium. Hence, although there is little
change in the s(K) curves, use of the optimal stochastic policy
can effectively lead to a substantially larger stock of whales
(on average), while decreasing the (mean) optimal capacity by
only 11%, from K = 2250 to K = 2000.

PERFORMANCE OF OPTIMAL AND SUBOPTIMAL POLICIES

At this point, two fundamental questions need to be ad-
dressed: how sensitive is the value of the fishery to changes
in the policy curves s(K) and #(S) away from their optimum
positions and how well do the policy functions obtained as
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optimal for a deterministic environment compare with “true”
optimal policies for the stochastic fishery?

1n The very nature of optimal controls suggests that small

variations in the controls should have even smaller effects on

O the value function (Ludwig 1980). This indeed appears to be

Q the case in the present model. Using the deterministic version,

cthe optimal policy function A(S) for the base case prawn
fishery was perturbed first upwards and then downwards by

= 10%. The reduction in the value function was approximately

D 1.0% in both cases, a result in agreement with Ludwig’s point

T that the variation in the value function should be proportional

': to the square of the fractional deviation in the policies.

5 It was shown above that policies that take into account
fluctuations in the fishery’s environment can differ from their
deterministic counterparts by as much as 30—40%, for rea-

O sonable parameter combinations. Optimal fisheries invest-

© ment, then, can be significantly higher, or significantly lower,

O under uncertainty. However, the optimal value function ap-

— pears to be rather insensitive to changes in the policy functions

>'< away from their optimal positions. Table | gives the value

%function (at discrete grid points in the R—K plane) based

pjon the optimal policies for a stochastic (o = 0.58) fishery

—with ¢ = 14 and & = $0.0832 X 10°. Table 2 represents

O comparable results using the optimal policies for the corre-

s sponding deterministic fishery, but evaluated in a stochastic

£ = 0.58) environment.

Q'O By comparing these value functions point by point, one can

gSée that the loss from using the deterministic policy is never

O Rore than $0.2 million. For example, with § = 2.1 x 10°
e quasi-equilibrium escapement) and K = 0, the optimal

vestment for the stochastic fishery is /* = 12.5, while the
terministic policy produces / = 8.8, a 30% underinvest-
ment. However, the reduction in value of the fishery caused
Wy using the deterministic policy is roughly 3%, or only $0.16
§ million, a rather negligible amount when one considers the

S overal! lack of precision attainable in real-world fisheries.
Hence, while etfects of uncertainty on the policies themselves
can be considerable, the use of “incorrect” deterministic pol-

£ icies may not reduce the fishery’s value significantly. The

g implications of this result are discussed below.

=
o

<
[&]

Discussion

nloaded

Results obtained here point to three primary conclusions,
B involving (i) the qualitative differences between deterministic
O and stochastic fisheries, (ii) the upside/downside determi-
‘53 nants of optimal investment under uncertainty, and (iii) the

- performance of deterministic versus stochastic strategies. On
§ the first point, heuristic analysis of the stochastic model indi-
S cated that optimal investment and escapement policies under

s uncertainty should not differ qualitatively from the deter-
% ministic case; numerical results confirmed this expectation.
LT However, by simulating stochastic sample paths and steady-
™ state distributions, it was shown that in practice the appear-
& ance of an optimally managed stochastic fishery is quite dif-
O ferent from that of its deterministic counterpart. Even in the
long run, optimal fleet capacity in a stochastic environment
should be expected to fluctuate over a fairly wide range. This
range will be greater the slower growing and the more variable
the resource stock. In particular, an optimal investment pro-
gram should allow the capital stock to respond positively to

Wi
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TaBLE 2. Expected value function V(R,K) for a ¢ = (.58 sto-
chastic environment, but determined using the “optimal” policies for
the corresponding deterministic fishery. Recruitment is given in mil-
lions of kilograms, capacity K in standardized vessels, and value in
millions of Australian dollars.

Recruitment

Capacity 0.20 0.50 1.00 2.00 3.00 4.50 7.00 20.0

0.0 448 490 523 575 6.11 645 676 7.25
3.0 463 508 546 596 643 695 757 9.63
6.0 477 525 5.68 6.18 6.69 7.38 828 11.7
9.0 490 541 587 639 693 7.75 888 135

12.0 503 557 606 662 7.15 806 940 I5.1
15.0 5.16 572 6.24 6.84 7.37 835 984 164
18.0 528 5.87 641 7.05 7.58 857 102 176

21.0 540 601 658 724 777 876 106 18.7

unusually “good” years, either by permitting increased entry
of vessels or by direct acquisition of extra capital. This is done
in full knowledge that idle capacity will then be greater in the
“bad” years. (The possibility of various “political” pressures
leading to the overutilization of this new capacity may be a
real danger but has not been included in the model discussed
here.)

The balancing of upside and downside risks has been used
here to explain the quantitative effects of uncertainty on opti-
mal fleet capacity. In all fisheries investment decisions there
exists an upside risk of foregone benefits in exceptionally
good years and a downside risk of suffering idle capacity in
bad years. Whether optimal investment wiil be higher or
lower under uncertainty (compared with the deterministic
optimum) depends on the relative importance of these risks,
which in turn are influenced by fishery parameter values.

The intrinsic biomass growth rate (@) and the ratio 8/c7T of
unit capital cost to maximum yearly operating costs are of
particular importance in this regard. Figure 9 shows (a,d)
combinations (with ¢T fixed) for which optimal capacity is
generally higher (+) or lower (—) under uncertainty
(o = 0.58), together with a rough curve dividing the two
regions.

In general, investment will be higher under uncertainty if
the resource is fast-growing and capital is relatively cheap. In
this case, the upside benefits of extra fleet capacity are sub-
stantial, while the downside risks of idle capacity are not as
critical. The reverse will be true for a slow-growing stock with
expensive capital. This suggests a guiding principle for esti-
mating the qualitative effect of randomness, without under-
taking a full stochastic analysis: if the ratio of unit capital cost
to yearly operating costs seems fairly low, and if the resource
is reasonably fast-growing (as with prawn stocks), then in-
vestment is likely to be at least somewhat higher under uncer-
tainty. This information may be useful in determining whether
a fishery has indeed experienced overinvestment, or whether
apparent excess capacity is in fact optimal given the history of
the fishery’s development in the face of uncertain future stock
sizes.

The framework of upside versus downside fisheries in-
vestment risks is useful as well in analyzing the effects of
other model parameters. It was found in particular that lower
depreciation rates and lower discount rates increase the
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Fig. 9. [nteraction between biomass growth rate and cost of capital
in determining the role of uncertainty in fisheries investment. Points
shown represent (a,8) combinations that have been considered.
Investment increases (+) or decreases (—) with uncertainty.
(Diagram is not drawn to scale and the dividing line is approximate.)

tendency for optimal investment to be higher under uncer-
tainty. In addition, the general results discussed above were
found to apply to the case of Ricker stock-recruitment and to
the aggregated whaling fishery.

Examination of the quantitative results obtained here shows
that for moderate levels of variability, and reasonable param-
eter combinations, the relative difference between stochastic
and deterministic optimal fleet capacities can reach 30—40%.
This results in substantial over- or under-investment in fleet
capacity when the deterministic model is used in place of a
full stochastic model. Target escapements, on the other hand,
tended to be remarkably insensitive to the level of uncertainty
in the fishery, a result in agreement with previous research.

Irreversibility of investment increases the importance of
inherent uncertainty in the fishery. This is particularly the
case for fisheries with slow-growing resource stocks, where
the occurrence of an unusually “bad” year may lead to capital
lying idle for a substantial part of its economic life. However,
in accordance with the work of other researchers (e.g. Lewis
1981), results obtained here show that for the linear-cost
risk-neutral fishery model, optimal policies recognizing the
stochastic nature of the fishery tended to perform only some-
what better than policies based on the corresponding deter-
ministic model. In other words, the use of a deterministic
model was sufficient in most cases to produce policies with
near-optimal performance (on average). Indeed, it is apparent
that any investment strategy sufficiently near the optimal will
perform almost optimally. While this result certainly does not
reduce the importance of uncertainty to fisheries manage-
ment, it does imply that with linear costs and risk neutrality,
economic optimization is “forgiving”; other objectives (con-
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servation, job creation, etc.) can be pursued with little loss in
the fishery’s economic value, as long as the modified policy
remains near the optimal strategy (with a deviation of roughly
+20% being reasonable).

Lewis (1981) has shown that this “forgiving” nature need
not apply when either nonlinear costs or risk aversion are
included. Since results obtained here show that investment
policies can be strongly affected by uncertainty, even with
linear costs and risk neutrality, the incorporation of additional
nonlinearities may make the use of stochastic rather than
deterministic investment policies particularly important to the
fishery’s performance. This will be a topic of future research.

This paper has emphasized the determination of optimal
investment policies in the face of uncertainty arising through
stochastic fluctuations in the resource stock. It has been
assumed that the underlying population dynamics, repre-
sented by the stock-recruitment function F(S), are given.
However, in practice, stock-recruitment parameters (and
some economic data) are known only imprecisely. In such
circumstances, parameter estimates must be refined from year
to year as new information becomes available. The effects of
this parameter uncertainty on fisheries investment, and the
role of parameter updating in overcoming these uncertainties,
are considered in Charles (1983b). It is found there that initial
errors in stock-recruitment parameter estimates can lead to
considerable long-term overcapacity. Parameter uncertainty,
it seems, plays an important role alongside stochastic vari-
ability in determining optimal investment strategies. The
formulation of adaptive management policies, in which fish-
eries investment responds to new information, and is used in
turn as a tool to acquire information, promises to be a fruitful
area for further research.
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