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A dynamic fisheries model is developed to simultaneously optimize investment in the 
resource stock (the fish) and investment in the capitd stock (the fleet). Each of these 
investment problems faces a major complication; investment in the resource is constrained by 
the natural population dynamics, while investment in the physical capital stock tends to be 
irreversible because capital used in natural resource industries is often nonmalleable. The 
model assumes a seasonal fishery in which annual escapement and capital investment levels 
can be controlled. A dynamic programming approach is us& to analyze the model heuris- 
tically and numerically. The comparative dynamics of optimal investment strategies are 
studied, with regard to (i) delays in investment, (ii) population dynamics parameters, (iii) fish 
price, (iv) capital cost, (v) depreciation rate, and (vi) discount rate. In particular, the depre- 
ciation rate and the ratio of unit capital costs to unit operating costs play interesting and 
complex roles in determining optimal investment levels. 

CHARLES, A. T. 1983. Optimal fisheries investment: comparative dynamics for a deteminis- 
tic seasonal fishery. Can. J. Fish. Aquat. Sci. 40: 2869-2079. 

hln modkle de fiche dynasnique a kt15 Clabork dams le but d'optimiser l'investissement 
dam la ressource (le poisson) en m6me temps que 19investissement en capital (la flottille). 
Chacun de ces investissements rencontre une complication rnajeure : l'investissement dms la 
ressource doit subir la contrainte de la dynamique de population naturelle, dors que I9iuves- 
tissement en capitd physique tend A Ctre h5versible parce que, souvent, le capital utilisk dans 
les industries de ressources naturelles est non mallkable. Le md&le  suppose une @the 
saisonnaik~e dans laquelle peuvenat Ctre rkglts les niveaux daCchappement annuel et de mise de 
fonds. On utilise une programmation dynamique pour analyser le mdble  de mani&re heuris- 
tique et numCPique. La dynmique comparative des strategies d'investissement optimales est 
CtudiCe ssus les aspects suivants : (i) retards dans I'investissement, (ii) param2tres de dyna- 
mique de population, (iii) p i x  du poisson, (iv) coot en capital, (v) taux d'amortissement et 
(vi) taux d9escornpte. Le taux d'amortissement, en particulier, ainsi que le rapport du coOt en 
capital unitaire au coat d'op6ration unitaire jouent des rdles intkressants et complexes dans 
la dbtemination des niveaux d'investissement optima. 
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THE chronic problem of overcapacity in fisheries has been tend to be faced with the problem of nonmalleability of capi- 
well documented, but analytical studies of optimal fleet sizes tal; specialized fishing h a t s ,  like forestry and mining 
and fisheries investment strategies have been rare. On the machinery, often have few if any alternative uses. Hence, 
other hand, determination of optimal investment levels and investment is irreversible - capital cannot be removed from 
optimal capital stocks is a popular topic in the economics the fishery except through natural depreciation, This problem 
literature, but with few exceptions little effort has been made of irreversibility was discussed in general terns by Arrow 
to apply this theory to renewable resource management. (1968) m d  in the context sf exhaustible resource production 

The difficulties in utilizing economic theory to ded with by Campbell (1980) and Lasserre (1983). Second, in fisheries 
fisheries investment problems are twofold. First, fisheries management the question of investment in the capitd stock 

(the fleet) cannot be separated from "investment9' in the 
Printed in Canada (57236) resource stock (the fish), the Hatter being accomplished by 
Imprime au Canada (57236) 

2069 

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
Sa

in
t M

ar
y'

s 
U

ni
ve

rs
ity

 o
n 

07
/1

4/
17

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



2070 CAN. 9. FISH. AQUAT. SCI., VOL. 40, 1983 

controlling harvest rates or escapements. The resulting joint 
investment problem is faced each season; decisions regarding 
desired fleet size and desired fish stock size must be made 
simultaneously . 

Due to these complexities, most fisheries management 
models to date have concentrated on the resource stock, 
treating the capital stock as given. Those that have considered 
capita1 investment explicitly have generally used simplifying 
assumptions to avoid either the irreversibility problem or the 
dynamic joint investment problem described above. An ex- 
ample of the former is that of Smith (1968), in which both the 
fish population and the fleet size vary over time, but capital 
is treated as malleable (an assumption that could be reason- 
able for fisheries that have access to the capital stock of a 
larger "neighboring" fishery). The latter problem of dynamic 
joint investment is avoided if investment cam be assumed to be 
a once-and-for-aBl irreversible decision at the outset (Clark 
and Kirkwood 1979; Dudley and Waugh 1980; Silvert 1977); 
this would be the case, for example, if future fish populations 
are independent of current stock levels. Naturally, neither 
of the above simplifications applies in general. A more com- 
plete analysis has been undertaken by Clark et al. (1979), 
who solved a continuous-time deterministic version of the 
irreversible investment problem, with two state variables 
(biomass and fleet capacity) and two decision variables 
(fishing effort and investment) varying over time. Recently, 
McKelvey (1983) studied a similar model, involving the opti- 
mal mix of '6specialist" and "generalist" vessels in a fishing 
fleet. 

This paper extends the study of optimal capital investment 
in renewable resource industries by expanding the work of 
Clark et al. (1979). The model here is similar to theirs but 
more realistic in a number of respects: (i) a year-by-year time 
frame is used, with fishing taking place continuously within 
each season, (ii) the decision variables are end-of-season es- 
capement and yearly investment (as opposed to instantaneous 
fishing effort and investment in the CCM continuous-time 
case), and (iii) delays are allowed between the time at which 
investment decisions are made and the time at which these 
investments come online. 

In addition, a dynamic programming approach is used to 
study arbitrary stock-recruitment functions. including the 
Beverton-Holt and Ricker forms, and to obtain detailed com- 
parative dynamics results. Specifically, this paper describes 
the effects on optimal investment/escapement policies of the 
following factors: (i) discrete-time versus continuous-time 
analysis, (ii) investment delays, (iii) productivity and carrying 
capacity of the resource stock, (iv) fish price, (v) capital cost, 
(vi) discount rate, and (vii) depreciation rate. In a companion 
paper (Charles 1983), a stochastic version of the model is used 
to study the role of uncertainty in fisheries investment 
problems. 

The Model 

An aggregated (single-species single-cohort) fish stock is 
assumed, with the biomass at the beginning of season n + 1, 
R,, , , depending on the end-of-season escapement from the 
previous season, Sn7 according to the stock-recruitment rela- 
tionship R,,] = F(S,). In applications discussed here, this 

reproduction function will be either pure compensatory 
(F' > 0, F" < 0) or overcompensatory, using the Beverton- 
Holt or Ricker form, respectively (Beveston and Hslt 1957; 
Ricker 1954). Natural mortality is constrained to occur at the 
end of the fishing season, but fishing mortality occurs con- 
tinuously during the season, with biomass following the com- 
mon differential equation A-/dt = -h(r) = -qE(f)x-(t), where 
h(t) is the hawest rate, E(t) is the instantaneous aggregated 
fishing effort, q is a constant catchability coefficient, and 
initially x(0) = W,, in year nn. The escapement is then S. = 

R. exp [-q[E(t)df] where T is a fixed maximum season 

length. 
The capital stock, or fleet capacity, K, is represented here 

by the maximum instantaneous fishing effort; at any point 6 in 
the season n. effort is constrained by 0 5 E(t) z=z K.. Hence, 
Kn depicts the catching power of the fleet, an aggregated 
measure including fishing vessels, together with nets, 
machinery, engines, and training of the fishermen. 

For simplicity, the cost per unit s f  new fleet capacity is 
assumed to be a constant, 6, irrespective of the current level 
of capacity. Furthermore, it is assumed that this cost must be 
paid in full at the time the new capacity is ordered. The unit 
capital cost may be considered to include a fraction s f  pro- 
cessing capacity costs, where appropriate. (In practice, the 
type of vessel, or the mix of vessel types, chosen for a fishery 
may affect the unit operating cost and the unit capital cost in 
different ways. This complication is not included here; the 
fleet is taken to be homogeneous.) 

Depreciation is assumed to occur at the end of each season, 
with a constant fraction y (the depreciation rate) of the current 
capital stock wearing out or otherwise being removcd from 
the fishery at that time. 

Perhaps the most important assumption in this model, as in 
the Clark et al. (1979) model, is the irreversibility of in- 
vestment. It is assumed here that the fleet capacity cannot be 
decreased at will but only through the process of depreciation. 
Hence, the dynamics of the capital stock, K, can be expressed 
as follows: 

where the investment In+ becomes available in year ~t + 1. 
(This key irreversibility assumption could be relaxed some- 
what given either a positive scrap value for fishing capital (see 
Clark et al. 1979, p. 35-37) or the possibility of bringing 
outside vessels, either domestic or foreign, into the fishery on 
a temporary basis (see, e.g., McKelvey 198%). In any case, 
investment is not entirely irreversible in the model, since 
capital depreciates annually, as is the situation in real-world 
fisheries .) 

A further consideration in dealing with investment policies 
is the possibility of a delay existing between the time an 
investment decision is made and the time the corresponding 
new capacity becomes available. Such delays may arise due 
to the time necessary to construct new vessels and/or trans- 
port them to the fishing grounds. In a deterministic world, 
such investment delays increase the effective capital cost and 
change the appearance of optimal policies but do not affect the 
substance of the management problem. In this paper the cases 
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of instantaneous and delayed investment are compared, but 
primary emphasis is placed on the more realistic delayed 
investment assumption. To simplify the structure of the model 
while incorporating a reasonable delay, it is assumed that in 
any given year the decision regarding next season's optimal 
capacity must be made before the end of the current season 
md that full payment for any new investment must be made 
in the current season. 

The fishery management problem involves yearly escape- 
ment and investment decisions. The timing of the two deci- 
sions depends on the assumption regarding delays in bringing 
investment online; the following applies to the delayed in- 
vestment case. Given the recruitment R,, the optimal escape- 
ment Sz is chosen, subject to the constraint W,eiqTK" 5 Sf 5 
RR where the lower limit is reached by fishing with maximum 
effort throughout the season. Then, the optimal investment for 
next year is chosen, subject to I,+ 1 4) and based on the value 
of S:; payment is made in year n for this new capacity, 

The fishery is assumed to face perfectly elastic demand 
(with given constant selling price p) and linear operating costs 
(with unit cost of effort c). Yearly rents accruing to the fleet, 
as a function sf recruitment, capacity, escapement, and in- 
vestment, are then given by 

= p(W - S) - (c/q) log (R/S) - 81 

using &/dl = -qEx, x(0) = W, x(T) = S. Assuming that the 
fishery manager desires to maximize the discounted sum of 
annual fishery rents, our problem can be stated as follows: 

subject to W,+' = FCS,), K,+I = (I  - y)K. + 
R,ePqmn 5 S, 5 W,, I,+, 2 O where a is the annual dis- 
count factor. 

The dynamic programming equation for the value of the 
fishery in state (R,,K,,) at the start of a season n is given by 

where R,+, = F(S,), Kn+I = (1 - y)K,, + IP,+,, the outer 
maximization is subject to R , c - ~ ~ ~ ~  5 Sn 5 R,, and the inner 
maximization is over the range I,,+1 2 0. This is simply a 
statement, using Bellman's (1957) principle of optimality, 
that the value of the fishery is given by the maximum value 
of the sum of current rents plus the discounted future value of 
the fishery, where the escapement and investment levels are 
chosen from the set of a11 feasible values. Removing the 
subscripts on the variables, this can be rewritten as 

(1) V(W,K) = Max Max {T(W,K,S,I) 
R.exp  ( qP'K)--S-R 120 

+ aB/[F(S), (1 - ydK+ I ] )  

where T(R,K,S,H) = p(R - S) - (s /q)  log (R/S) - 61. 
Equation 1 will form the basis for most of the analysis and 

results presented in this paper. For convenience, a full list and 
definition of symbols used in this paper follows: 

Annual recruitment 
Fleet capacity (capital stock) 
Annual escapement 
Annual investment 
Instantaneous biomass (in-season) 
Instantaneous fishing effoet 
Value function 
Partiai derivative sf  V with respect to R 
Partial derivative of V with respect to K 
Target escapement function 
Target fleet capacity function 
Stock-recmiament function 
Maximum productivity of the fish stock 
Maxinmum possible recruitment 
Instantaneous natural mortality rate 
Maximum possible season length 
Instantaneous catchability coefficient 
Unit market price for '"fish 
Unit cost of fishing effort 
Unit cost of capital 
Annual depreciation rate 
Annuai discount factor = I /(1 + discount rate) 
Annual fishery rents 
Bionomic zero-profit biomass level = c / p q  

Heuristic Analysis and Numerical Method 

To gain qualitative information about the optimal invest- 
ment and escapement problem, this section begins with an 
heuristic study of the dynamic programming equation 8 .  
Assume for now that the fish stock displays pure compen- 
satory population dynamics (i.e. a concave increasing stock- 
recruitment function, as in the Beverton-Holt mode!) and 
that VR > 0, VK > 0, VRK > 0, and VK, < 4) over all nonzero 
values of W and K for which V is twice differentiable. The 
latter assumption simply states that more fish and more capital 
increase the value of the fishery, that more fish are more 
desirable the larger the capital stock, and that the fishery has 
decreasing marginal returns to capital. 

Performing the inner maximization in equation I ,  for fixed 
S, produces the optimality equation for investment: 

(2) VK[F(S), ( I  - y)K + I*] = 6/eu 

or I* = 0 if VK[F(S), (1 - y)K] < 6/a .  

This states that, unless the fleet is temporarily overcapital- 
ized, next year's optimal capacity, (1 - y)K + I * ,  should be 
set such that the marginal benefit of an extra unit of capital 
equals its marginal cost; 

Define K' = h(S) as the solution of the implicit equation 
VK[F(S), K'] = 6/a .  Then, h(S) is next season's optimal 
capacity, which is an increasing function of escapement by 
the above assumptions (Charles 1982). 
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Thus, if (1 - y)K > h(S), the optimal investment is I* = 0 
(capital is already sufficiently abundant), while otherwise, P* 
is chosen so that ( 1  - y)K + I*  - lags). This can be written 
as 

(3) I*(S,K) = Max [h(S) - ( I  - y)K, 01 

so that, in general, investment desired for the next season 
depends both on capacity and on escapement in the current 
season. 

Inserting B*(S,K) into equation 1, performing the outer 
maximization by taking a total derivative with respect to S, 
and noting that for any S and K either I:(s,K) = 0 or 
aa/,[F(S), ( I  - y)K + B*(S,K)] - 6 = 0, an optimality 
expression is produced; this equates the masginal benefit and 
marginal cost of an incremental increase in escapement: 

where xo = c /pq  is the bionomic zero-profit biomass Bevel, 
and the constraint Req7" 5 S 5 R has been neglected 
temporarily. 

Assume that equation 4 implicitly defines a unique function 
S = s(K), representing the target escapement for a given 
capacity level, K. NumeAcal tests indicate that s(K) is indeed 
a well-behaved single-valued function. In Charles (1982) it is 
shown that this target escapement increases with the level of 
the capital stock, approaching the optimal escapement for the 
more common abundant-capital problem as the fleet capacity 
becomes large. In other words, for sufficiently large K, s(K) 
satisfies the "Modified Golden Rule" equation: 

From a particular state (R,K) of the fishery, the feasible 
escapement S is constrained by 8ePqTK I S 5 R .  Hence, the 
target s(K) may not always be attainable and the optimal 
escapement S* = S*(R,K) must be defined as follows: 

Rsexp (-qTK); R > s(K) cxp (qTK) 
45) S*(R,K) = d m ;  R intermediate 

R ;  R < s(K). 

This completes, at least heuristically, the overall synthesis 
of the optimal harvesting/investmen$ policy in the form of the 
two policy functions s(K) and h(S), giving the optimal action 
(S* ,I*) as a function s f  the state (R,K). In general terms, the 
optimal escapement is expected to increase with the current 
capital stock size, while the optimal fleet capacity desired for 
next season should increase with the current end-of-season 
escapement. Given the optimal policies S*(W, K) and I*(S, K), 
the resulting value function is defined implicitly by the 
equation 

which is rather complex in general but simplifies somewhat in 
special cases (see last subsection under Numerical Results). 

To summarize the behavior of the fishery, at the beginning 
of a season, given recruitment W and capacity K, the fish 
stock is first harvested down to an escapement S*(R,K). 
Then, depreciation and investment occur such that if the de- 
preciated fleet capacity (1 - y)K is less than the target capital 
stock h(S*), investment brings the capacity to h(S*) by the 
start of the next season. The process is then repeated from the 
new biornass/capacity point {F[S*(R,K)], ( I  - y)K + 
H*[S*(R,K),K]). The resulting trajectories, and their eventual 
convergence on a long run equilibrium point, are discussed 
under Numerical Results. 

The above heuristic discussion applies to the delayed in- 
vestment case. If, instead, investment is assumed to occur 
instantaneously, appropriate modifications must be made to 
the analysis (see Charles 1982 for details). It is shown there 
that the only substantial changes are ((i) the optimal fleet 
capacity target becomes a function of the current season's 
recruitment rather than the past seasons's escapement, 
K* = &(R), and (ii) the effective unit capital cost is reduced 
from 6 to as, since new investment is now available 
immediately. 

The heuristic analysis provides the basis for the numerical 
methods used to solve the dynamic programming problem, 
equation I .  In particular, optimal management can be sum- 
marized in the form of two policy curves, s(K) and h(S) 
(or h(R)) ,  representing the optimal escapement and capacity 
targets, respectively. The numerical scheme uses a 'poolicy 
iteration" methodology to derive these optimal control func- 
tions. This approach, discussed extensively in Charles 
(I982), is simply outlined here. First, an initial guess is made 
for s(K) and h(S), and the value function V corresponding to 
these policies is calculated. The partial derivatives VR and B/K 
are then deduced and inserted into equations 2 and 4; these are 
used to obtain improved policies s(K) and h(S). The c o m -  
sponding new value function is determined and the policy 
improvement algorithm is repeated until suitable convergence 
to the optimal functions s(K) and h(S) is achieved. 

The numerical scheme for accomplishing this policy iter- 
ation process requires discretization of the state variables (bio- 
mass and capacity) and use of a two-dimensional grid in the 
biomass/capacity plane. For each pair of policy functions, a 
set of simultaneous equations is solved for the value function 
at grid points, and a smooth surface is formed between these 
points to obtain the partid derivatives VR and V K .  Linear or 
cubic interpolation is used where necessary to deduce values 
lying between the grid points. 

The numerical scheme worked well in all cases involving 
delayed investment. A modified methodology was required 
when investment was instantaneous; for the two base cases 
considered under Numerical Results, this revised method per- 
formed well when the fish stock was slow-growing but was 
ill-behaved in the one fast-growing case. Hence, in this latter 
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TABLE I .  Base case parameter values for the prawn and whale fisheries. The data 
are adapted from Clark and Kirkwood (1979) and Clark and htmberson (1982) 
(ed, catcher day; BWU, blue whale unit; A$, Australian dollars). 

Quantity Prawn fisherya Whale fishery 

'Fish" price ( p )  
Variable cost (c) 
Capital cost (6 )  
Depreciation rate (7 )  
Discount factor (a) 
Catchability 49) 
Max.  season length (T) 
Nat. mortality rate (m) 
Max. productivity (ha )  

Max. recruitment (b)  

-- 

0 . 9  ~ $ . k g - '  9000 US$-BWU-' 
1600 A$ * wk-I vessel-' 5000 US$ a ed- ' 

0.47 x 10\A$. vessel ' 18000 US$.cd-' yr ' 
0.15 0.15 
0 . 9  0 . 9  
0.08199 - wk-I vessel-' 1 .3  x ~ O - ~ e d - '  

26.0 wk 1 .8  yr 
0.05.  wk-I 0.1 yr-' 

42.0 1.15 
7 . 0 ~  10' kg 1.186X 107 BWU 

case, results reported here are approximate (but do in fact can be considered.) 
reflect the qualitative behavior deduced in this section). It will be of interest to compare optimal investment policies 

with the open-access scenario resulting from uncontrolled 
Numerical Results fisheries development. Assuming that in the open-access case 

investment continraes until the average net revenue (per unit 
A full analysis of the deterministic investment and escape- capacity) just covers the unit capital cost, then in equilibrium: 

ment model embodied in equation 1 can now be provided. 
Numerical results are based &I two fisheries: (i) the Australian 
Gulf of Carpenteria banana prawn fishery (Clark and 
Kirkwood 1979) and (ii) the aggregated pelagic whaling fish- 
ery (Clark and Lmberson 1982). 

The available data for these fisheries have been somewhat 
simplified to fit the present model and to emphasize the opti- 
mal investment problem. In the prawn fishery. a homoge- 
neous fleet is assumed, an average prawn weight used in lieu 
of intraseasonal growth, and natural mortality is constrained 
to occur during the off-season. The whaling data used by 
Clark and h m b r s o n  (1982) have been converted from 
csntinuous- to discrete-time and, as in the continuous-time 
case, delays in recruitment are neglected (cf. Clark 19'96). 

The stock-recruitment function F(S) is given by W = 
F(S) = ksSl(1 + aS/b) or R = FCS) = aS*e-"""b for the 
Beverton-Holt and Ricker cases, respectively, where S is the 
escapement after fishing has taken place. The maximum pos- 
sible recruitment, 8, for the prawn fishery is set q u a l  to the 
sample mean of recruitment data from G. P. Kirkwood 
(C.S. I.R.O. Division of Fisheries, Craanulla, Australia, per- 
sonal communication). The maximum rate s f  growth, or 
productivity, of the pawn stock, a, is set arbitrarily at the 
moderately higb base value of a = 42. 

The data used for each fishery are presented in Table 1. If 
S is the escapement after fishing, Se-"" is taken to be the 
end-of-year escapement after both fishing and natural mor- 
tality. An examination of the stock-recruitment functions in- 
dicates that the factor can be directly incorporated by 
changing the value of a given in Table B to ~ e - " ~ ;  hereafter, 
the stated value sf a is always first transformed to ae-mT 
before being inserted in the stock-recruitment function F(.).  
(Note that although the results presented below are based on 
two fisheries and two stock-recruitment functions, they are in 
fact quite general. With the choice of the Beverton- Holt or 
Ricker function, one can capture the qualitative features of 
most fisheries, and by varying the parameters in the two base 
case fisheries, arbitrary economic and ecological conditions 

where the left-hand side represents the total present value of 
discounted rents, per unit of capital. Setting H = -yK to hold 
the capital stock constant in equilibrium, and assuming full 
utilization of the fleet, this can be written as 

a 
- a  

l - a  
[ p ( R  - S)/K - cT - 761 = 8 

with R = F(S) = ,YeQTK. This simplifies to 

Solving this quation simultaneous%y with the equilibrium 
condition F(S)e-9rK = S produces the open-access equilib- 
rium capital stock and biomass. 

If Beverton-Holt stock recruitment is assumed, so that 
F(S) - aS/(l + aS/b), this solution can be simplified. In 
equilibrium, F(S)/S = w/[1 + (aS/b)] = eaTK, so that S = 
( b / ~ ) ( a e - ~ ~ ~  - 1). Hence, the open-access capacity can be 
restated as the solution of the equation 

This equation can be solved iteratively for the optimal fleet 
capacity K and is applied below. 

Interpretation of the results is facilitated by comparing with 
those obtained by Clark et al. (1979), who assumed that 
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I 2 3 4 5 6 

BIOMASS (MI LblONS OF K I LOGRAMS) ~!CMAss CT'HousANos OF BWU) 

FIG. 1. Optimal capacity function, k(R), and optimal escapement function, s (K) ,  for (a) the base case prawn fishery and (b) the base case 
whale fishery, with instantmeous investment. Large arrows indicate the merall effect of fishery dynamics. Sample trajectories and the long-run 
equilibrium (R ,K)  are also shown. - - 

investment occurs instantaneously. Figure 1 here is precisely 
the discrete-time analogue of the Clark et al. (1979) results 
(in particular their fig. 2), and the s(K) and h(S) curves cor- 
respond closely with their switching curves, al md a2, 
respectively. As expected, both s(K) and h(S) are increasing 
functions, be(%) is concave, and s(K)  approaches a maximum 
value at large fleet capacities. To the left of the s(K) curve, in 
region R,, neither harvesting nor investment is desirable. In 
region R2, harvesting should take place, reducing the fish 
stock towards the target escapement curve s(K), or as close as 
possible to that escapement given the level of capacity avail- 
able. However, as long as the fishery is in region Rz, no new 
fleet investment should be undertaken. If K < h(R), so that the 
fishery lies in region R3, immediate investment should occur 
until K = h(R),  and thereafter, harvesting should reduce the 
fish stock towards the s(K)  curve. 

A sampling of possible trajectories is shown in the figure. 
Note that all trajectories eventually converge on a single long- 
run equilibrium point @,K) given in terns of recruitment and 
capacity (after depreciation and reinvestment). The equilib- 
rium point corresponds to the point (x*,K*) in Clark et al. 
(1979) and represents the optimal equilibrium in the ease 
where capital is perfectly malleable but not "abundant," so 
that the rental cost of capital must be included in variable 
costs. This is discussed in more detail in Charles (1982). 
Unlike in the Clark et al. (1979) model, this equilibrium p i n t  
is not apparent from examining the K = h(R) policy curve 
alone. In the continusus-time case, when a trajectory reaches 
the biomass level x = x * ,  below (x*,K*),  the optimal policy 
is an instantaneous investment to the capacity level K = K*, 
thereafter remaking at (x*,K*). In discrete time, however, 
trajectories tend to b'jump9' across the line R = rather than 
touch it smoothly, SO the use of a single final impulse control 
at & is not a feasible method to reach the equilibrium p in t .  

Furthermore, whereas equilibrium is reached in finite time 

with the continuous-time model, in a discrete-time situation 
the approach to equilibrium is asymptotic. The more gradual 
approach to equilibrium in discrete-time seems to reflect the 
benefit of incrementally increasing fleet capacity as the 
biomass grows, to take advantage of limited intraseasonal 
harvesting. 

Apart from the differences mentioned above, the behavior 
of this instantmeous investment model md that of Clark et a]. 
(1979) are quite similar, due to the pure compensatory nature 
of both the Beverton-Holt function and the continuous-time 
growth function used by Clark et al. (1979). 

As discussed under The Model, the introduction of delayed 
investment produces little change in the desired escapement 
and capacity in any given year, except inasmuch as payment 
for the new capacity must be made earlier than would be the 
case for instantaneous investment, md hence, effective capi- 
tal costs are higher. However, management implications and 
the appearance of the optimal policies can differ substantially, 
since optimal capacity is now given as a function of escape- 
ment rather than recruitment. 

Figure 2 depicts the optimal policies for the prawn fishery, 
with delayed investment, but otherwise unchanged parame- 
ters. With this fast-growing stock, o low escapement this year 
c m  still produce a large recruitment next year. Hence, it may 
be optimal to plan and pay for investment this year, even 
though stocks seem low, in the knowledge that when this new 
capacity becomes available next season, it can be used to 
harvest a much larger fish stock. This can lead to the situation 
shown in region & of Fig. 2, where positive investment is 
optimal even though a harvesting moratorium is in place. 

When such a situation arises, optimal escapement s(K) 
must be independent of fleet capacity at low capital stocks (as 
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BIOMASS (MILLIONS OF KILOGRAMS) 

FIG. 2. Optimal policy functions for the base ease pmwn fishery 
with delayed investment. Sample trajectories and the long-run equi- 
librium (2,g) are indicated. 

in Fig. 2). Intuitively, the rationale for this is as follows. If, 
for a given escapement S, the current capacity is relatively 
low, investment will take place up to the capacity level hQS), 
a level dependent solely on the escapement. Next year's re- 
cruitment, F(S), is also dependent on the escapement. Hence, 
in such circumstances, current capacity is irrelevant to the 
determination of sptimal escapement, which is therefore inde- 
pendent of K. Apart from this effect, however, the intm- 
duction of delays in investment does not change the s(K) 
curve significantly. 

It can be shown that for a fishery based on a slow-growing 
stock (whales), little qualitative change in the h(S) curve is 
noticeable between the instantaneous and delayed investment 
cases: the policy curves in Fig. 1b remain essentially un- 
changed with the introduction of delays in investment. 

In both the prawn and whale fisheries, trajectories again 
approach a long-run equilibrium, which can be compared with 
the corresponding open-access results obtained using equa- 
tion 6. For the prawn fishery, the open-access capacity, 16.8 
standardized vessels, is roughly double the optimal level. In 
the whale fishery, however, equilibrium biomass is very sen- 
sitive to the capital stock. Hence, the open-access and optimal 
capacities cannot differ by much; in fact, the values turn out 
to be very close, at 2505 and 2250 catcher dayslyr, r e spc -  
tively. These results indicate that the extent to which open- 
access conditions produce overinvestment can vary consid- 
erably. Of course, the actual open-access investment behavior 
may be quite complicated, so that the present m d e l  only 
approximates the true situation. 

PRODUCTIVITY AND CARRYING CAPACITY OF THE RESOURCE 

Using the Beverton-Holt stock-recruitment function R = 
F(S) = a*S/(1 f a*S/b), with a*  = ne-mT, the maximum 
productivity (intrinsic growth rate) is F'(8) = a*  = ae -"". As 
a increases, holding the maximum recruitment b constant, 
recruitment becomes less and less dependent on escapement. 
One would expect that the higher the growth rate of the stock, 
the better off the fishery and hence the higher is the optimal 
capacity. This is confirmed for the prawn fishery in Fig. 3, 

FIG. 3. Effect of prawn stock productivity on the optimal policy 
functions. Long-mn equilibrium pints  for each parameter value are 
indicated. 

where optimal policy functions are shown for each of a = 3.5, 
14, 42, and 560, with b = 7.0 X 10"xed. 

With a = 3.5, actual productivity is ue-"" = 0.95 < I ,  so 
the stock size will decline towards extinction even without 
fishing. Not surprisingly, a zero investment level is optimal in 
this case, but if for some reason fleet capacity is already in 
place, harvesting should occur down to the zero-profit level 
s(K) = xo = 1.0 X 10" The optimal policy functions for the 
case a = 14 resemble those of the relatively low-productivity 
whale fishery, while a = 42 corresponds to the base case 
prawn fishery. As productivity increases, the h(S) optimal 
capacity curve continues to shift upwards. The limiting case 
where recruitment is independent of escapement is approxi- 
mated here by setting a = 560; the optimal capacity curve is 
fairly flat, with h(S) = 12, for all but the lowest escapements. 

The optimal escapement at low fleet capacity decreases 
steadily towards , ~ o  with a declining biomass growth rate. This 
confirms the idea that with a slow-growing stock and a low 
level of capacity one has little incentive to conserve the cur- 
rent stock, which will decline towards a low Bong-run equi- 
librium even without fishing. On the other hand, at high 
capacity levels K, the optimal escapement s(K) depends on the 
intrinsic growth rate in a rather complicated way (see Fig. 5). 
As before, s(K) -- xo if productivity is very low, but with 
increases in the growth rate, the reproductive potential of the 
stock is improved, and higher escapements s(K) are desirable. 
Ultimately, however, at high productivity, recruitment be- 
comes less dependent on escapement. so that the optimal 
escapement s(K) can be reduced, increasing immediate bene- 
fits with little effect on future stocks. 

The maximum recruitment level, b,  serves as a suitable 
indicator of the carrying capacity of a fish stock with 
Beverton-Holt dynamics. The value b = 7.0 x 106, used in 
the base case, was derived from the sample mean of recent 
prawn reC~uitment data and has been substantially revised and 
extended from that used in the analysis of Clark and Kirkwood 
(1379): their older data produce the value b = 11.3 x 106. 
The optimal policies based on each of these carrying capacity 
values, with productivity set at a = 42.0 in both cases, indi- 
cate that revising the data produces substantial movement in 
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BIOMASS [MILLBWS OF KIUGRAMS) 

FIG. 4. Role of depreciation in the base case prawn fishery. The 
zero-depreciation equilibrium curve is shown, together with equi- 
librium points comesponding to y = 0.05, 0.15, and 0.20. 

both optimal p l icy  functions. The optimal equilibrium 
capacity declined from 14.5 to 8.2 if the new data are used in 
place of the old (see Charles 1982 for further details). This 
relative decrease in optimal capacity holds also when higher 
values of productivity, such as a = 560, are considered. 

In summary, the productivity and carrying capacity of the 
fish stock can have substantial effects om the optimal policies, 
in particular the optimal capacity function. This is especially 
of interest in such cases as the banana prawn fishery, where 
little is known about the stock-recruitment relationship. 
Dealing with parameter uncertainty in these fisheries becomes 
an important problem for further research. 

The value of the depreciation parameter, y = 0.15, used by 
Clark and Eamberson (1 982) was utilized in the base case runs 
for both the prawn and the whaling fisheries. In a capital 
investment model, it is of interest to examine the effect on 
optimal policies of variations in the depreciation rate* 

The results for the prawn fishery ((Fig. 4) are intuitively 
appealing. A decrease in the depreciation rate leads to an 
upward shift in the investment curve h(S), reflecting the in- 
creased life and hence the increased value of a new unit of 
capacity. On the other hand, an increase in y increases the 
desire to use capacity before it depreciates, leading to a shift 
in the s(K) curve to lower escapements. This latter shift is less 
pronounced at high capacity values, where capital is relatively 
abundmt In the "near future" even for y = 0.20. 

With no depreciation (y = O ) ,  capacity HI: can never de- 
crease. Charles (1982) showed that the set sf points (%,K) that 
satisfy S = Max [ . Y ( K ) , F ( S ) ~ - ~ ~ ]  and that lie above the curve 
K = h(S) form an equilibrium curve upon which all tra- 
jectories will converge. However, in the particular case of 
(Fig. 4, the optimal capacity curve h(S) is very flat for suf- 
ficiently large escapement levels. Hence, if the capital stock 
is initially low, fishery dynamics will be such that investment 
will occur up to the equilibrium level K - 15. Thereafter, the 
biomass will adjust so as to approach the long-run equilibrium 
p i n t  on the 9 = O optimal capacity curve. 

RG. 5. Role of depreciation in the whale fishery. The equilibrium 
point for the y = 0.15 case and the equilibrium curve for the 7 = O 
case are shown. 

For the whale fishery (Fig. 5) the variation of the s(K) 
curve with y is qualitatively similar to that of the prawn 
fishery. In the y = 0 case, the long-run equilibrium will again 
lie somewhere on the equilibrium curve, above the curve 
K = k(%). However, the optimal capacity curve is now suf- 
ficiently steep that if the fishery has a low initial capital stock, 
a wide range of equilibrium points may be reached, depending 
on the initial recruitment value. 

The unusual aspect of these whaling fishery results is the 
intersection of the h(S) investment curves derived for the two 
levels of depreciation and, in particular, the fact that for 
sufficiently large biomass levels, the optimal capacity level is 
higher with depreciation than without. As described above, 
one might expect that if a unit of investment is profitable, 
given a relatively high depreciation rate, then that same unit 
of investment is even more desirable if it is longer lasting (in 
the absence of depreciation). Indeed, this is the case with the 
prawn fishery results above. 

This counterintuitive result can be explained by considering 
the interaction sf two key fishery parameters, the biological 
productivity (a or aaePmT)  and the relative cost of capital 
(6/cT). The latter is a measure of the fishing fleet's capital 
intensity, being the ratio of unit capital costs, 6, to maximum 
yearly unit variable costs, c a  T (the quantity 6/cT is discussed 
further in C h l e s  1983). For the prawn fishery, the effective 
intrinsic growth rate is aelmT = 11.45, while the cost ratio 
is 6/cT = 11-3. In the whale fishery, sae-mT = 1.04 and 
6/cT = 2.0. Hence, both the resource productivity and the 
relative cost of capital differ considerably between the two 
fisheries. Modifying the prawn fishery by sinaultaneously 
reducing the productivity to a = 14 ( ~ e - " ~  = 3.82) and 
reducing the capital cost so that 8/cT = 2.0 (implying 6 = 
$0.0832 million), optimal policies qualitatively similar to 
those of the whale fishery are obtained (Fig. 6). 

An analysis sf trajectories for the policy functions sf Fig. 6 
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8 I 2 3 4 5 6 7 

BBOMASS ~MlLL80NS OF KILOGRAMS) 

FIG. 6. Effect of the dep~ciation rate on a prawn fishery with low 
productivity (a = 14) md low capital cost (6 .= A$8.0832 million). 

indicates that the relative heights of the y = O and y = 0.15 
optimal capacity curves are determined not simply by the ratio 
8/cT but rather by a more complicated comparison of the 
present values of investment costs versus fishery rents. The 
zero-depreciation h(S) curve represents a balance between 
investment costs and the natural preference for a larger capital 
stock to enable more rapid accumulation of rents as the stock 
is harvested down to equilibrium. Depreciation introduces 
two new factors: (i) the need for future investment to over- 
come depreciation and (ii) the desire to "beat" depreciation by 
harvesting the stock before the fleet "wears out." It is this 
latter effect that appears responsible for the .g = 0.15 &(S) 
cawe lying above the corresponding zero-depreciation curve 
at high escapement levels. However, as depreciation in- 
creases beyond 15%, the optimal capacity c w e  drops as the 
yearly costs of overcoming depreciation predominate. M e n  
y = I.W, so that vessels last for only one season, the h(S) 
curve lies completely below its zero-depreciation counterpart. 
This rather complicated response to the depreciation rate 
seems to depend critically on actual parameter values, neces- 
sitating careful treatment of the data in specific applications. 
Nevertheless, an examination of the intrinsic gowth rate, a,  
and the ratio of capital to operating costs, 6/cT, provides a 
useful indication of the role that depreciation might play in a 
particular fishery. 

CAPITAL COST, RSW ~%~HcE, AND DISCOUNT RATE 

This section summarizes results concerning the sensitivity 
of optimal investment and escapement levels to unit capital 
costs (relative to operating costs), selling price, and discount 
rate (for further details see Charles 1982). 

The effects of changes in the unit capital cost, with unit 
variable cost (c) fixed, have been examined for the base case 
(a = 42) prawn fishery and for an a = 14 (lower productivity) 
prawn fishery. In the former case, a halving of the capital cost 
resulted in a 1.7-fold increase in equilibrium capacity. In the 
latter case, a reduction to almost one-sixth the us& capital 
cost, from $0.47 million to $8.0832 million, produces a 
3.5-fold increase in the equilibrium capacity (with y = 0.15). 
In both cases, optimal escapement at low capacities increased 

BIOMASS BMlLLlONS OF KILOGRAMS) 

FIG. 7. Optimal policy functions for a fishery with a Ricker stock- 
recruitment function (a = 11 -639, &, = 7.0 X lo6) (see text for 
details). 

as capital cost decreased, reflecting the increased benefit in 
saving more of the fish stock for the future, at which time 
capacity will be higher. 

The variation of the optimal policy functions with fish price 
was exmined for the a = 42 prawn fishery. A doubling of the 
price, from its actual level of $0.9 a kg-' to $1.8 a kg-', pro- 
duced more than a doubling in equilibrium capacity, while a 
halving of the price made investment entirely uneconomic, so 
that depreciation slowly reduces the fleet size to zero. How- 
ever, harvesting still takes place in this low-price case, as long 
as R > s(K), although the escapement target s(K) has in- 
creased relative to the base case. 

Optimal policy functions have been obtained for the a = 42 
prawn fishery with discount factors (and corresponding dis- 
count rates) of a = 0.99 (1%). 0.90 (l l%), and 8.8 (25%). 
Naturally, the lower the rate of discounting, the higher the 
benefit from investing in capacity for the future (to become 
available next yew) and the higher the desired escapement, 
s(K1, to be left at the end of the current season. While optima% 
escapements (for fixed K) increase with a, the equilibrium 
escapement decreases with a, reflecting the optimality of 
using the increased capacity that becomes available with low 
discounting. 

Results presented to this point have been based on the 
Beverton-Holt stock-recruitment function. In this section, 
these are compared with results obtained using the Ricker 
form, R = F(S) = ar% - e-"s'eb, which has the property that 
recruitment attains a maximum value of R = b at S = &/a, 
and thereafter declines roughly exponentially. Since the fleet 
capacity target K = h(S) is determined from the equation 
VK[F(S),K] = 6 / a ,  it would be expected that the optimal 
capacity will follow the qualitative behavior of the stock- 
recmitment function F(S), in this case initially increasing to 
a maximum and thereafter decreasing. 

Numerical results (Fig. 7) confirm this expectation. The 
parameters of the Wicker function used in this example, 
namely a = 11.639 and b = 7.0 X 106, were chosen so that 
the maximum recruitment is identical to that of the 
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TABLE 2. Optimal value function V(R,K) for the base case prawn fishery. Recruit- 
ment is given in millions of kilograms? capacity in standardized vessels, and value in 
millions of Australian dollars. 

Recruitment 

Capital 1 .0 2.5 4.0 5.5 7.0 8.5  10.0 

Beverton-Holt f o m  for the base case prawn fishery and 
occurs at S = 6.0 x lo6 (to produce a reasonable agreement 
with the Beverton-Holt curve for Iaw and medium escape- 
ments). Other model parameters are unchanged from those 
given in Table I for the prawn fishery, and delayed invest- 
ment is assumed. 

Note that there is a threshold level of escapement and hence 
of F(S) ,  below which no investment occurs. At high escape- 
ments, F(S) decreases and eventually drops below its thresh- 
old value; thereafter, a zero fleet size would be preferred, at 
least temporarily (the horizontal scale in Fig. 7 has been 
changed from that used in previous results to include this 
upper cutoff). The optimal escapement curve s(K) behaves 
similarly to those of Beverton-Holt cases, except the optimal 
high-capacity escapement has substantially increased. re- 
flecting reduced productivity at low escapements for this par- 
ticular Wicker curve. 

To this point the optimal policy functions, s(K) and h(S), 
have been derived and studied under various assumptions 
and parameter combinations. However, the dynamic pro- 
gramming approach produces not only the optimal policies 
but also the optimal value function. Indeed, for any policies 
s(K) and h(S), the correspnding value function is the solution 
sf equation 1 ' , with S*QR,K) and I*($* ,K) depending on s(K) 
and h(S*) through equations 5 and 3, respectively. 

A sample value function, corresponding to the optimal 
policy functions for the base case prawn fishery, is repre- 
sented in Table 2, which shows that for Beverton-Holt pop- 
ulation dynamics, B/R ) 0, Vti > 0, VRk ) 0, and VKK < 0 
throughout the R -K range considered; this is consistent with 
the assumptions made under Heuristic Analysis and Numer- 
ical Method. At low levels of the capital stock, the value 
function is quite insensitive to the level of recruitment, R.  
This reflects the Fact that, with low fleet capacity, increased 
recruitment has little effect on rents for the current season, and 
since the prawn stock is fast-growing, differences in this 

year's stock size tend to substantially disappear by next year. 
At sufficiently high capacity levels, the target escapement can 
be attained from a wide range of recruitment values. For such 
(R,K) combinations, V(R,K) = pR - (clq) Iog ( R )  + WK), 
and hence, changes in V due to variations in R can be easily 
calculated within ahis range. Numerical results shown in 
Table 2 agree with such analytic calculations. 

Discussion 

In the instantaneous investment case, results obtained here 
correspond closely to those of Clark et al. ( I979), the primary 
difference between the seasonal and continuous-time models 
being the more gradual approach to equilibrium in the 
discrete-time case. The important conclusion of Clark et al. 
(1979) regarding the optimality sf "a complex pattern of ex- 
pansion, overcapacity, and gradual contraction via deprecia- 
tion" towards an "optimal sustained yield" equilibrium holds 
for the present seasonal model as well. 

As in Clark et al. (1979), optimally managed fisheries will 
tend to move between three primary regimes: (i) a high- 
biomass, low-capacity regime, with both harvesting and in- 
vestment being desirable, (ii) a high-biomass, high-capacity 
situation, in which investment is unwmanted but harvesting 
takes place, and (iii) a low-biomass case in which the fishery 
is essentially shut down, with neither hmesting nor invest- 
ment being desired. 

The introduction of delays in investment, as well as adding 
further realism to the model, produces the possibility of a 
fourth management regime in which the resource stock is too 
low to permit harvesting but is expected to recover during the 
"investment delay" period. Ira such cases, planning and pay- 
ment for investment becomes desirable when current capacity 
is sufficiently low. Assuming linear variable costs and a 
present value rent maximization objective, optimal mnage- 
ment was found to be characterized by capacity and eseape- 
ment target curves, h(S) and s(K), representing the optimal 
capacity for given escapement S and the optimal escapement 
for a given fleet capacity K, respectively. 
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The optimal capacity function proved to be particularly 
sensitive to the fish price and stock-recruitment parameters, 
indicating the potential importance of including parameter 
uncertainty in the analysis. Variations in the depreciation rate 
produced rather complicated effects, depending both on the 
magnitude of unit capital costs (relative to operating costs and 
other economic factors) and on the actual values of the depre- 
ciation rate being considered. It was suggested that if capital 
is relatively inexpensive and if the depreciation rate is positive 
but not too large, the optimal capacity at high stock sizes can 
be greater with depreciation than without. This result runs 
counter to the usual idea that depreciation, as a type of fishing 
cost, should lead to lower investment. It appears to be caused 
by a dynamic disequilibrium incentive to harvest the resource 
quickly, before the fa eet "wears out." 

In the case of Ricker stock-recruitment, the optimal capac- 
ity function adopted an appearance mimicking that sf the 
stock-recruitment curve itself, increasing rapidly at low es- 
capements and declining relatively slowly at higher escape- 
ments. This effect is due to the delay in bringing new in- 
vestment online; desired capacity for next season depends on 
the current escapement, acting though the reproduction func- 
tion F ( S ) .  This property can be used to predict roughly the 
qualitative appearance of optimal investment curves based on 
other stock-recruitment relationships. 

While numerical results have been obtained here for two 
specific fisheries, the methodology and the qualitative results 
can be expected to apply in many fisheries, as well as in 
forestry and agricultural investment problems. It is clear from 
both qualitative and quantitative results presented here that a 
full analysis of renewable resource management must include 
questions of optimal investment strategies. Indeed, for many 
of the cases examined, the investment aspect is substantially 
more complex than the more widely studied optimal h a -  
vesting problem. 
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