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Abstract 

1/f noise is a widespread phenomenon in physical and behavioral systems. It typically 

occurs in systems that show long-term memory, and its sources are likely to be 

multifarious. This paper shows how a modeling approach which combines moving 

averages of 2 or more distinct time scales readily yields 1/f-type noise spectra.  This 

result is then interpreted psychologically, suggesting that recent extensive findings of 1/f 

noise in human behavior may well result from the presence of attentional, memory or 

control structures operating on distinct time scales, for which there is considerable 

evidence.  Also presented is an alternative autoregressive modeling approach, which is 

shown to only yield 1/f type spectra under rather special conditions and hence does not 

provide a route of general explanation. 
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Introduction 

"1/f noise"  refers to a relation between a system's spectral power density S( f )  and its 

frequency f of the form f
−β

 , with beta about 1.   Thus a log-log plot of S & f  will be 

linear with slope −β  , where beta is near 1 (in practice, it may vary as widely as 0.5–1.5 

or 2).  f −β  noise occurs widely in physical systems such as semiconductors, 

superconductors and optical devices (e.g., Handel & Chung, 1993).  Recent work (Gilden 

et al., 1995; Gilden, in press, Pressing & Jolley-Rogers, 1997) has found evidence for 1/f  

noise in various human estimation tasks, including tapping, line drawing, and spatial 

sectioning of line segments.  Such effects have  also been found in a variety of sequential 

reaction time measurements of cognitive processes:  mental rotation, lexical decision, 

serial visual search, and parallel visual search (Gilden, in press).  In a related paper, Wing 

& Pressing (in preparation) have found such effects in force production tasks.  After 

illustrating the nature of the effect, this paper is concerned with simulations that allow the 

inference of mechanisms responsible for it and an elucidation of possible relations 

between experimental manipulations and spectral exponent value (that is, beta in the f
−β

 

relation). 
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 1/f noise in force production 

In work reported fully elsewhere, Wing & Pressing (in preparation) measured grip force 

and load force for a repeated vertical force task. The task was to perform  iterated vertical 

force pulses using a thumb vs forefinger and middle finger grip on a solid metal circular 

cylinder, using one of two learned force levels, and at one of  different speeds.   The runs 

were executed in continuation mode, so that a computer-generated tone indicated the 

correct approximate tempo initially for 8 trials;  thereafter, the tone ceased.  The forces at 

each regular force peak were then determined by a peak detection algorithm, and their 

sequential values formed the time series used in analysis. In this work we found 

consistent clear examples of 1/f noise.    Two examples of this from the pilot study are 

found in figures 1 & 2. 

Figure 1 shows the load (vertical) force for one subject performing at about 300 ms 

period, with a 200 Hz sampling rate and run length of 600 events.  Figure 2 shows the 

grip (horizontal) force for the same run for the same subject.  Both plots show classic 1/f 

linearity. 

These graphs are typical of the results in psychological experiments, in that linearity is 

found for low to medium values of frequency, and there is often a (typically short) 

plateau for the high frequencies. 
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Figure 1: load force spectral power density for a single run 
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Figure 2: grip force spectral power density for a single run  

 

An investigation of theoretical underpinnings 

 

We seek to identify simple mechanisms for the 1/f effect.  Although there appears to be 

no universal analytical procedure that generally explains all cases of f −β  spectral 

forms, several types of system structure have been been found to yield such behaviour.   

One perspective on 1/f processes ascribes them to self-similarity across different levels of 

system structure.  This fractal property shows itself in the fact that the sum or product  of 

two 1/f processes is 1/f (Kawai, et al., 1993), and in the absence of a characteristic 

distance or time scale, a phenomenon known as scale invariance.  Since exact self-

similarity is not essential,   one pragmatic and easily modelled form of this perspective is 

the idea that 1/f spectra can arise from systems that feature multiple discrete time scales 

(e.g., in relaxation or processing or production), or certain continuous distributions of 
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them (Montroll & Shlesinger, 1982).  From this perspective, nonlinearity and 

determinism play no essential role (Handel & Chung, 1993).  Multiple time scales have 

been been invoked as explanations of human cognitive control processes and attentional 

fluctuations (e.g., Pressing & Jolley-Rogers, 1997),  and simulations based on this 

approach are presented as Method 1 below.   

Another perspective is that 1/f spectra are associated with certain conditions of 

deterministic nonlinearity.  Thus, such spectra are found to occur in many cases where 

deterministic nonlinear systems operate either in intermittency or chaotic regimes 

(Handel & Chung, 1993; Shuster, 1996), although such outcomes are certainly not 

universal.  (The intermittency case provides a clear link with the idea of multiple time 

scales, because intermittency always yields at least 2 time scales.)   Handel (1993) has 

shown that nonlinear state equations with a homogeneous characteristic function are 

necessarily 1/f  when operating in the chaotic regime.  This result applies to both classical 

and quantum mechanical models of physical systems.  Thus instability or marginal 

stability is an essential element in this perspective.  Hence below, with Method 2, we 

look at (linear) systems operating on the cusp of autoregressive stability.    

 

Method 1 

 

The first simulation method begins with an uncorrelated  white noise process e .  One 

simple way to generate multiple time scales from such a process is to use a moving 

average operation.  Let us denote the moving average of e  based on a time window of 

N  points by     MA(e,N) .  That is, the nth term of     MA(e,N)  is just 
 

      
(en + en−1 + en−2 +Ken−N+1)/N ,        so that (1) 
 

a simple example of a 3-time scale process would be 

 

    P = e +w1MA(e,N1) +w2MA(e,N2 ),    (2) 
 

which invokes the time scales 1, 
N1 and 

N2 .  Here 
w1 and 

w2  are weights for the 

moving average processes.  Two actual series produced in this way are shown in figures 

3a & 3b. 
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Figure 3a:  sample time series with three time scales  (1/f slope = -1.26) 
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Figure 3b: a second sample time series  with three time scales (1/f slope = -1.05) 

 

Equations of the type (2) readily generate 1/f-like shapes.  Three examples are shown in 

figures 4a, 4b, & 4c for single runs of 1024 points, using a white noise source with a 

uniform distribution over [0,1].   
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Figure 4a:  spectral power density of white noise plus  one moving average of white noise 
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Figure 4b:   spectral power density of white noise plus two moving averages of white 

noise 

 



Paideusis - Journal for Interdisciplinary and Cross-Cultural Studies: Volume 2 / 1999     ARTICLES 

 

 X - 50 

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

e + 3MA(e,5) + 9MA(e,25) + 27MA(e,125)

slope = -1.06

power

frequency  

Figure 4c:  spectral power density of white noise plus three moving averages of white 

noise 

 

Figures 4a, 4b, & 4c respectively show 2, 3, and 4 time scales.  Slopes were determined 

from a simple linear best fit.  The three figures illustrate the qualitative results of a 

considerable number of simulations, which suggested two things: three processes (figure 

4b) give a more nearly linear plot than two (and there is perhaps an additional smaller 

improvement with four processes);  and the precise values of weights and time windows 

do not greatly alter the property of approximate linearity or the value of the exponent, 

provided long time scale terms have greater weights. 

In the time domain, 1/f processes are associated with long range autocorrelation.  Figure 

4d shows a sample correlogram of the 4 time scale process of figure 4c.  The general fall 

off to zero over the range of the largest moving average is typical, but repeated 

simulations show considerable variability, and in many cases the trend to zero is far from 

monotonic. 
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 Figure 4d: example of a correlogram of the 4 time process of figure 4c. 

 

The effects of weights and times on slope can be demonstrated more systematically by a 

series of simulations using three time scales in which we set N2 = N1
2

 and 

    
w2 =w1

2
.  This means that the time windows can be considered to be based on a 

single scale factor N  and the weights can be considered to be based on a single scale 

factor   w , and that we factor in a certain degree of self-similarity.  The explicit form of 

the series is thus 

 

    P = e +wMA(e,N )+w
2
MA(e,N 2 )    (3) 

 

We determined the f −β  power spectral density log-log slopes over the ranges 

      N1 =1, 2,L15  and 
      w1 =1, 2,L15 , with the results as in figure 5. 
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Figure 5:  log-log 1/f slopes for a sum of three sources:  white noise, and two weighted 

moving averages of white noise.  See Eq. (3).  Factor ranges are 1–15 in both cases. 

 

Each of the 225 points represents a 1000 event simulation with the indicated time 

window and weight factors.  The results show that when the time window factor is 1, the 

spectral power density gives a slope near zero, as it should, since in this case we have 

white noise at a single time scale.  However, inclusion of processes with time window 

greater than 1 causes the slope to drop markedly.  Over the entire range of time window 

and weight factors, the slope is primarily between -0.5 and -1.5.  The average slope for all 

225 points is -1.087.  Weight factors in the range 4—6 were found most likely to yield 

slopes close to -1.   There is, of course, no guarantee that such values are optimum in 

other systems.  However, similar results were obtained with the same range of factors for 

two and four time scales. 

For time window factors greater than 1, the time window size factor has a relatively weak 

effect overall—see figure (5).  The direction of the effect can be seen in the following 

figure 6, which roughly corresponds to a view from the left in the previous figure of a 

slice of the surface made by a plane parallel to the time window/slope plane, although 

here the time factor is the scale of the longest window, not a ratio between both time 

window lengths.  Since this factor has the largest weight, the effect is amplified over that 

seen in figure 5: 
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Figure 6:  spectral power density slopes for various longest time scales 

 

Each point here is a 1000 event run with slope produced by simple linear fitting. 

On the basis of these simulations it appears that the primary determinant of the slope is 

weight factor—that is, the relative strength of the different components, with less effect 

from their particular time values.  This can be interpreted as meaning that 1/f noise effects 

point to processes operating at different time scales and with markedly different 

amplitudes.   

This result shows that fractal like structure in time can indeed produce 1/f  behaviour, and 

that neither deterministic causation nor nonlinearity is required to do so.  The high 

frequency plateau occurs because at the very highest frequencies only effects from the 

single fastest frequency will be significant, creating a within-band approximation to white 

noise, hence, a noisy plateau.  In other frequency ranges, at least two time scales interact.  

Further examination of simulations supported this point, so that when the time scale 

factor was large, the size of the high frequency plateau increased, at the expense of the 

region of linearity.   

This general trend can be shown quantitatively.   Simulations were performed with a 

weight factor of 5, and time window factors varying from 2 to 15.  In each case, 5 runs of 

1024 points were run, and an estimate of the high frequency plateau size determined as 

follows:  First the moving average of the power spectral density was computed with a 

window of 6 bins.  Then the point of lowest frequency that was still <= 10% above the 

mean power value of the highest 100 frequency bins (412-511) of the moving average 

was determined, call it bin Z.  Then plateau size was estimated as plateau size = ln(511) - 

ln(Z).  The result is shown in figure 7.  Error bars indicate standard errors. 
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Figure 7:  An illustration of increase in high frequency plateau size with time window 

factor N.   
 

Method 2 

 

Another method that can produces linear log-log spectral plots is based on a simple linear 

autoregressive model.  Consider a 2nd order ARMA-like model (Pressing, 1997) with 

parameters alpha and beta.  

 
An +1 = (1−α)An −βAn − 1 + (Cn − P) + (Mn+1 −Mn ) (4) 

 
Here alpha and beta are respectively first and second order error correction parameters, 

and the other variables (Cn ,Mn ) are white noise sources with P = mean (C). 
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For nearly all values of alpha and beta, this autoregressive model yields a flat spectrum of 

slope about zero.  However, consider the special case when beta is equal to minus alpha.  

In this case the model is only marginally stable, since for alpha + beta < 0, the model is 

unstable.  Hence the model is on the threshold or cusp of stability.  When alpha = beta = 

zero, the process is a random walk (with a modified noise structure), which is known to 

yield 1/ f 2
, or Brownian noise. 

Simulations were performed under this condition, varying the alpha (and hence negative 

beta) parameter in increments of .1 from -1 to +1.  Outside this range the series is 

unstable. Parameter values for the Gaussian white noise sources were those typical of 

human performance of rhythmic temporal patterns:  mean(C) = P = 500 ms, sigma(C) = 

15 ms;  mean(M) = 40 ms, sigma(M) = 3.5 ms.  Figure 8 shows the first 1000 points of a 

typical single run and figure 9 shows a power spectrum plot for the same run, which had 

α = −β = 1.   Deviations from linearity at the highest frequencies are pronounced, 

but if this range were not measured, or reduced in power by filtering, a very good linear 

plot would be the result. 
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Figure 8: an ARMA-like time series from Eq (4) in a region of marginal stability, with 

α = −β = 1 
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Figure 9:  power spectrum for the series of figure 8 

 

The generality of this was examined as follows:  At each alpha value 10 runs of 

individual length 2048 points were obtained.  Resultant slopes were averaged over the 10 

runs and figure 10 shows the results in  plot of slope versus parameter.  All plots had 

extended regions of linearity with negative slope.  Some plots showed a limited 

plateauing or increase effect for high frequencies.  Therefore the best linear slope was 

computed for bins 1–500 (a large fraction of the range on the log-log plot) so that the 

nonlinear portion of the curve did not bias the apparently linear portion for lower 

frequencies.  If this restriction was not imposed, then some slopes moved into the upper 

reaches of the 1/f region as before. 

Each point in the  graph represents the results of 10 runs of 2048 steps per data point.  

Error bars indicate standard errors. 
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Figure 10: Slope of best linear fit for low frequency linear region in a log-log plot of 

spectral power density vs. frequency as a function of autoregressive parameter alpha 

 

Conclusions 

 

The work here confirms that the presence of multiple time scales can credibly yield 1/f 

noise effects over a wide parameter range.  Marginal stability regimes can yield negative 

power spectrum slopes as well, but slopes are generally considerably more negative than 

minus one and may show high frequency peaking.  The results here do not yield unique 

identification, since other types of system behaviour can yield 1/f effects:  for example, 

the important theory of extremal events of Miller, Miller, and McWhorten (1993).  

However, the mechanism of multiple time scales has in its favour both physiological and 

psychological plausibility when we are looking in the domain of human behaviour. 

The main points found were: 

•summed effects of multiple time scale random processes can naturally yield 1/f spectra, 

with exponents mainly in the range -1.5 to -.5 when fractal scale factors vary over the 

range 2–15 
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•many time scales are not required;  3 or even two is sufficient 

•to achieve 1/f effects, slow processes must have greater amplitude (weight) than faster 

processes 

•the power spectrum exponent is more affected by process weight than process time scale 

factor 

•power spectrum exponent increases (becomes less negative) with decreasing weight 

factor 

•power spectrum exponent increases (becomes less negative) with increasing time scale 

factor 

•size of high frequency plateau tends to increase with time scale factor 

•goodness of fit to a straight line tends to increase with number of processes 

 

What are the specific sources of such processes in the organism?  These are not difficult 

to imagine.  At the neurophysiological level, neural interactions acting over various 

distance scales, and based on different local capacities, efficiencies and task 

requirements, will clearly tend to produce mutiple time scales and amplitudes.  At the 

behavioral level, common experience teaches that overt behaviours organized around a 

particular goal or set of linked goals operate over various time scales. At the cognitive 

level, two obvious candidates are attention and memory.  Memory is customarily divided 

into three time scales:  that of the sensory store, that of short term memory, and that of 

long term memory.  Likewise, different time scales play a role in standard classifications 

of attention, as automatic, conscious, or sustained.   Vigilance tasks, with which the tasks 

here have a considerable amount in common, typically exhibit drifts of attentional focus 

over various time frames, with larger deviations occurring with larger time scales. 
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